The local Hölder exponent for the entropy of real unimodal maps

2018 ◽  
Vol 61 (12) ◽  
pp. 2299-2310
Author(s):  
Giulio Tiozzo
2007 ◽  
Vol 44 (02) ◽  
pp. 393-408 ◽  
Author(s):  
Allan Sly

Multifractional Brownian motion is a Gaussian process which has changing scaling properties generated by varying the local Hölder exponent. We show that multifractional Brownian motion is very sensitive to changes in the selected Hölder exponent and has extreme changes in magnitude. We suggest an alternative stochastic process, called integrated fractional white noise, which retains the important local properties but avoids the undesirable oscillations in magnitude. We also show how the Hölder exponent can be estimated locally from discrete data in this model.


2020 ◽  
Vol 379 (1) ◽  
pp. 103-143
Author(s):  
Oleg Kozlovski ◽  
Sebastian van Strien

Abstract We consider a family of strongly-asymmetric unimodal maps $$\{f_t\}_{t\in [0,1]}$$ { f t } t ∈ [ 0 , 1 ] of the form $$f_t=t\cdot f$$ f t = t · f where $$f:[0,1]\rightarrow [0,1]$$ f : [ 0 , 1 ] → [ 0 , 1 ] is unimodal, $$f(0)=f(1)=0$$ f ( 0 ) = f ( 1 ) = 0 , $$f(c)=1$$ f ( c ) = 1 is of the form and $$\begin{aligned} f(x)=\left\{ \begin{array}{ll} 1-K_-|x-c|+o(|x-c|)&{} \text{ for } x<c, \\ 1-K_+|x-c|^\beta + o(|x-c|^\beta ) &{} \text{ for } x>c, \end{array}\right. \end{aligned}$$ f ( x ) = 1 - K - | x - c | + o ( | x - c | ) for x < c , 1 - K + | x - c | β + o ( | x - c | β ) for x > c , where we assume that $$\beta >1$$ β > 1 . We show that such a family contains a Feigenbaum–Coullet–Tresser $$2^\infty $$ 2 ∞ map, and develop a renormalization theory for these maps. The scalings of the renormalization intervals of the $$2^\infty $$ 2 ∞ map turn out to be super-exponential and non-universal (i.e. to depend on the map) and the scaling-law is different for odd and even steps of the renormalization. The conjugacy between the attracting Cantor sets of two such maps is smooth if and only if some invariant is satisfied. We also show that the Feigenbaum–Coullet–Tresser map does not have wandering intervals, but surprisingly we were only able to prove this using our rather detailed scaling results.


2002 ◽  
Vol 22 (01) ◽  
Author(s):  
ALE JAN HOMBURG ◽  
TODD YOUNG
Keyword(s):  

2001 ◽  
Vol 11 (06) ◽  
pp. 1683-1694 ◽  
Author(s):  
K. KARAMANOS

We show that the numbers generated by the symbolic dynamics of Feigenbaum attractors are transcendental. Due to the asymmetry of the chaotic attractors of unimodal maps around the maximum in the general case, a standard conjecture, that the occurrence of chaos is related to the transcendence of the number defined by the corresponding symbolic dynamics is reassessed and formulated in a quantitative manner. It is concluded that transcendence may provide an appropriate measure of complexity.


2009 ◽  
Vol 29 (2) ◽  
pp. 381-418 ◽  
Author(s):  
V. V. M. S. CHANDRAMOULI ◽  
M. MARTENS ◽  
W. DE MELO ◽  
C. P. TRESSER

AbstractThe period doubling renormalization operator was introduced by Feigenbaum and by Coullet and Tresser in the 1970s to study the asymptotic small-scale geometry of the attractor of one-dimensional systems that are at the transition from simple to chaotic dynamics. This geometry turns out not to depend on the choice of the map under rather mild smoothness conditions. The existence of a unique renormalization fixed point that is also hyperbolic among generic smooth-enough maps plays a crucial role in the corresponding renormalization theory. The uniqueness and hyperbolicity of the renormalization fixed point were first shown in the holomorphic context, by means that generalize to other renormalization operators. It was then proved that, in the space ofC2+αunimodal maps, forα>0, the period doubling renormalization fixed point is hyperbolic as well. In this paper we study what happens when one approaches from below the minimal smoothness thresholds for the uniqueness and for the hyperbolicity of the period doubling renormalization generic fixed point. Indeed, our main result states that in the space ofC2unimodal maps the analytic fixed point is not hyperbolic and that the same remains true when adding enough smoothness to geta prioribounds. In this smoother class, calledC2+∣⋅∣, the failure of hyperbolicity is tamer than inC2. Things get much worse with just a bit less smoothness thanC2, as then even the uniqueness is lost and other asymptotic behavior becomes possible. We show that the period doubling renormalization operator acting on the space ofC1+Lipunimodal maps has infinite topological entropy.


1993 ◽  
Vol 03 (02) ◽  
pp. 323-332 ◽  
Author(s):  
MICHAŁ MISIUREWICZ

Following Brown [1992, 1993] we study maps of the real line into itself obtained from the modified Chua equations. We fix our attention on a one-parameter family of such maps, which seems to be typical. For a large range of parameters, invariant intervals exist. In such an invariant interval, the map is piecewise continuous, with most of pieces of continuity mapped in a monotone way onto the whole interval. However, on the central piece there is a critical point. This allows us to find sometimes a smaller invariant interval on which the map is unimodal. In such a way, we get one-parameter families of smooth unimodal maps, very similar to the well-known family of logistic maps x ↦ ax(1−x). We study more closely one of those and show that these maps have negative Schwarzian derivative. This implies the existence of at most one attracting periodic orbit. Moreover, there is a set of parameters of positive measure for which chaos occurs.


2005 ◽  
Vol 2005 (1) ◽  
pp. 69-85 ◽  
Author(s):  
J. P. Lampreia ◽  
R. Severino ◽  
J. Sousa Ramos

We introduce a tree structure for the iterates of symmetric bimodal maps and identify a subset which we prove to be isomorphic to the family of unimodal maps. This subset is used as a second factor for a∗-product that we define in the space of bimodal kneading sequences. Finally, we give some properties for this product and study the∗-product induced on the associated Markov shifts.


2016 ◽  
Vol 209 ◽  
pp. 33-45 ◽  
Author(s):  
Lori Alvin ◽  
Nicholas Ormes

2019 ◽  
Vol 29 (03) ◽  
pp. 1950039
Author(s):  
J. Leonel Rocha ◽  
Abdel-Kaddous Taha

This paper concerns the study of the Allee effect on the dynamical behavior of a new class of generalized logistic maps. The fundamentals of the dynamics of this 4-parameter family of one-dimensional maps are presented. A complete classification of the nature and stability of its fixed points is provided. The main results relate to the Allee effect bifurcation: a new type of bifurcation introduced for this class of unimodal maps. A necessary and sufficient condition so that the Allee fixed point is a snap-back repeller is established. In addition, in the parameters space is defined an Allee’s effect region, which determines the existence of an essential extinction for the generalized logistic maps. Local and global bifurcations of generalized logistic maps are investigated.


Sign in / Sign up

Export Citation Format

Share Document