Reducing energy loss via tuning energy levels of polymer acceptors for efficient all-polymer solar cells

2020 ◽  
Vol 63 (12) ◽  
pp. 1785-1792 ◽  
Author(s):  
Huiliang Sun ◽  
Bin Liu ◽  
Jianwei Yu ◽  
Xianshao Zou ◽  
Guangye Zhang ◽  
...  
Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2152
Author(s):  
E. M. Mkawi ◽  
Y. Al-Hadeethi ◽  
R. S. Bazuhair ◽  
A. S. Yousef ◽  
E. Shalaan ◽  
...  

In this study, polymer solar cells were synthesized by adding Sb2S3 nanocrystals (NCs) to thin blended films with polymer poly(3-hexylthiophene)(P3HT) and [6,6]-phenyl-C61-butyric-acid-methyl-ester (PCBM) as the p-type material prepared via the spin-coating method. The purpose of this study is to investigate the dependence of polymer solar cells’ performance on the concentration of Sb2S3 nanocrystals. The effect of the Sb2S3 nanocrystal concentrations (0.01, 0.02, 0.03, and 0.04 mg/mL) in the polymer’s active layer was determined using different characterization techniques. X-ray diffraction (XRD) displayed doped ratio dependences of P3HT crystallite orientations of P3HT crystallites inside a block polymer film. Introducing Sb2S3 NCs increased the light harvesting and regulated the energy levels, improving the electronic parameters. Considerable photoluminescence quenching was observed due to additional excited electron pathways through the Sb2S3 NCs. A UV–visible absorption spectra measurement showed the relationship between the optoelectronic properties and improved surface morphology, and this enhancement was detected by a red shift in the absorption spectrum. The absorber layer’s doping concentration played a definitive role in improving the device’s performance. Using a 0.04 mg/mL doping concentration, a solar cell device with a glass /ITO/PEDOT:PSS/P3HT-PCBM: Sb2S3:NC/MoO3/Ag structure achieved a maximum power conversion efficiency of 2.72%. These Sb2S3 NCs obtained by solvothermal fabrication blended with a P3HT: PCBM polymer, would pave the way for a more effective design of organic photovoltaic devices.


Author(s):  
Gabriela Lewinska ◽  
Jerzy Sanetra ◽  
Konstanty W. Marszalek

AbstractAmong many chemical compounds synthesized for third-generation photovoltaic applications, quinoline derivatives have recently gained popularity. This work reviews the latest developments in the quinoline derivatives (metal complexes) for applications in the photovoltaic cells. Their properties for photovoltaic applications are detailed: absorption spectra, energy levels, and other achievements presented by the authors. We have also outlined various methods for testing the compounds for application. Finally, we present the implementation of quinoline derivatives in photovoltaic cells. Their architecture and design are described, and also, the performance for polymer solar cells and dye-synthesized solar cells was highlighted. We have described their performance and characteristics. We have also pointed out other, non-photovoltaic applications for quinoline derivatives. It has been demonstrated and described that quinoline derivatives are good materials for the emission layer of organic light-emitting diodes (OLEDs) and are also used in transistors. The compounds are also being considered as materials for biomedical applications.


ChemSusChem ◽  
2021 ◽  
Author(s):  
Virginia Cuesta ◽  
Rahul Singhal ◽  
Pilar Cruz ◽  
Ganesh D. Sharma ◽  
Fernando Langa

Solar RRL ◽  
2021 ◽  
pp. 2100013
Author(s):  
Hang Yang ◽  
Yingying Dong ◽  
Hongyu Fan ◽  
Yue Wu ◽  
Chaohua Cui ◽  
...  

2008 ◽  
Vol 18 (45) ◽  
pp. 5468 ◽  
Author(s):  
Fengling Zhang ◽  
Johan Bijleveld ◽  
Erik Perzon ◽  
Kristofer Tvingstedt ◽  
Sophie Barrau ◽  
...  

Nano Energy ◽  
2021 ◽  
Vol 81 ◽  
pp. 105631
Author(s):  
Aili Wang ◽  
Xiaoyu Deng ◽  
Jianwei Wang ◽  
Shurong Wang ◽  
Xiaobin Niu ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiaqi Du ◽  
Ke Hu ◽  
Jinyuan Zhang ◽  
Lei Meng ◽  
Jiling Yue ◽  
...  

AbstractAll-polymer solar cells (all-PSCs) based on polymerized small molecular acceptors (PSMAs) have made significant progress recently. Here, we synthesize two A-DA’D-A small molecule acceptor based PSMAs of PS-Se with benzo[c][1,2,5]thiadiazole A’-core and PN-Se with benzotriazole A’-core, for the studies of the effect of molecular structure on the photovoltaic performance of the PSMAs. The two PSMAs possess broad absorption with PN-Se showing more red-shifted absorption than PS-Se and suitable electronic energy levels for the application as polymer acceptors in the all-PSCs with PBDB-T as polymer donor. Cryogenic transmission electron microscopy visualizes the aggregation behavior of the PBDB-T donor and the PSMA in their solutions. In addition, a bicontinuous-interpenetrating network in the PBDB-T:PN-Se blend film with aggregation size of 10~20 nm is clearly observed by the photoinduced force microscopy. The desirable morphology of the PBDB-T:PN-Se active layer leads its all-PSC showing higher power conversion efficiency of 16.16%.


Sign in / Sign up

Export Citation Format

Share Document