Petrology and geochemistry of clastic sedimentary rocks as evidences for provenance of the Late Palaeozoic Madzaringwe Formation, Tshipise-Pafuri Basin, South Africa

2016 ◽  
Vol 59 (12) ◽  
pp. 2411-2426
Author(s):  
Ntokozo Malaza ◽  
KuiWu Liu ◽  
BaoJin Zhao
2020 ◽  
Vol 123 (4) ◽  
pp. 655-668
Author(s):  
N. Lenhardt ◽  
W. Altermann ◽  
F. Humbert ◽  
M. de Kock

Abstract The Palaeoproterozoic Hekpoort Formation of the Pretoria Group is a lava-dominated unit that has a basin-wide extent throughout the Transvaal sub-basin of South Africa. Additional correlative units may be present in the Kanye sub-basin of Botswana. The key characteristic of the formation is its general geochemical uniformity. Volcaniclastic and other sedimentary rocks are relatively rare throughout the succession but may be dominant in some locations. Hekpoort Formation outcrops are sporadic throughout the basin and mostly occur in the form of gentle hills and valleys, mainly encircling Archaean domes and the Palaeoproterozoic Bushveld Complex (BC). The unit is exposed in the western Pretoria Group basin, sitting unconformably either on the Timeball Hill Formation or Boshoek Formation, which is lenticular there, and on top of the Boshoek Formation in the east of the basin. The unit is unconformably overlain by the Dwaalheuwel Formation. The type-locality for the Hekpoort Formation is the Hekpoort farm (504 IQ Hekpoort), ca. 60 km to the west-southwest of Pretoria. However, no stratotype has ever been proposed. A lectostratotype, i.e., the Mooikloof area in Pretoria East, that can be enhanced by two reference stratotypes are proposed herein. The Hekpoort Formation was deposited in a cratonic subaerial setting, forming a large igneous province (LIP) in which short-termed localised ponds and small braided river systems existed. It therefore forms one of the major Palaeoproterozoic magmatic events on the Kaapvaal Craton.


Author(s):  
P Chan ◽  
S Lyu ◽  
T Wang ◽  
F Jeng ◽  
T Ueng

2009 ◽  
Vol 109 (3-4) ◽  
pp. 213-223 ◽  
Author(s):  
Cheng-Yu Ku ◽  
Shih-Meng Hsu ◽  
Lin-Bin Chiou ◽  
Gwo-Fong Lin

2020 ◽  
pp. 203-226
Author(s):  
A. M. Sazonov ◽  
K. V. Lobanov ◽  
E. A. Zvyagina ◽  
S. I. Leontiev ◽  
S. A. Silyanov ◽  
...  

Abstract The Olympiada deposit, containing >1,560 metric tons (t; 50 Moz) of gold at an average grade of 4 to 4.6 g/t Au, occurs in central Siberia, Russia. Over 30 years, the deposit produced more than 580 t of gold, including 200 t from oxidized ore grading 11.1 g/t. The deposit forms a 2-km-long, steeply dipping system, which is traced downdip for 1.7 km. It occurs in the Neoproterozoic orogen of the Yenisei Ridge at the western margin of the Siberian craton. This and other gold deposits in the district are controlled by the large, long-lived Tatarka-Ishimbino tectonic zone, marking a suture between terranes chiefly consisting of deformed Meso- to Neoproterozoic carbonate-clastic sedimentary rocks. The combination of lithologic and structural factors was critical for localization of gold mineralization associated with calcic and siliceous alteration accompanied by early arsenic and late antimony sulfides. As a result, very fine (10 μm) and high fineness (910–997) gold associates with diverse sulfides, especially arsenopyrite, and commonly contains mercury, similar to some characteristics of Carlin-type deposits. Geochronologic studies suggest that mineralization was formed during several stages between 817 and 660 Ma. The isotopic composition of Os and He, along with presence of anomalous Ni, Co, and Pt, points to a mantle mafic source, whereas isotopic composition of Pb and S suggest a contaminated crustal source, i.e., originating from a mix of mantle and crustal fluids.


2020 ◽  
Vol 123 (3) ◽  
pp. 331-342
Author(s):  
T. Andersen ◽  
M.A. Elburg ◽  
J. Lehmann

Abstract Detrital zircon grains from three samples of sandstone from the Tswaane Formation of the Okwa Group of Botswana have been dated by U-Pb and analysed for Hf isotopes by multicollector LA-ICPMS. The detrital zircon age distribution pattern of the detrital zircons is dominated by a mid-Palaeoproterozoic age fraction (2 000 to 2 150 Ma) with minor late Archaean – early Palaeoproterozoic fractions. The 2 000 to 2 150 Ma zircon grains show a range of epsilon Hf from -12 to 0. The observed age and Hf isotope distributions overlap closely with those of sandstones of the Palaeoproterozoic Waterberg Group and Keis Supergroup of South Africa, but are very different from Neoproterozoic deposits in the region, and from the Takatswaane siltstone of the Okwa Group, all of which are dominated by detrital zircon grains younger than 1 950 Ma. The detrital zircon data indicate that the sources of Tswaane Formation sandstones were either Palaeoproterozoic rocks in the basement of the Kaapvaal Craton, or recycled Palaeoproterozoic sedimentary rocks similar to the Waterberg, Elim or Olifantshoek groups of South Africa. This implies a significant shift in provenance regime between the deposition of the Takatswaane and Tswaane formations. However, the detrital zircon data are also compatible with a completely different scenario in which the Tswaane Formation consists of Palaeoproterozoic sedimentary rock in tectonic rather than depositional contact with the other units of the Okwa Group.


Sign in / Sign up

Export Citation Format

Share Document