Vegetation pattern of Northeast China during the special periods since the Last Glacial Maximum

2019 ◽  
Vol 62 (8) ◽  
pp. 1224-1240 ◽  
Author(s):  
Xiaoqiang Li ◽  
Chao Zhao ◽  
Xinying Zhou
Bothalia ◽  
1983 ◽  
Vol 14 (3/4) ◽  
pp. 369-375 ◽  
Author(s):  
E. M. Van Zinderen Bakker Sr

In the vast region of East and southern Africa the alternating glacial and interglacial periods of the Quaternarv were characterized by considerable changes in temperature and precipitation. During the last glacial maximum the influence of the ITCZ was limited, while the circulation systems were strengthened. The ocean surface waters were cooler and the Benguela Current was activated. In the montane areas of East Africa and also in southern Africa the temperature dropped by about 6°C. During this hypothermal period, rainfall on the east African plateau and mountains diminished. Summer precipitation could still penetrate the eastern half of southern Africa from the Indian Ocean, while the western half was arid to semi-arid. Cyclonic winter rain migrated further north beyond the latitude of the Orange River. The consequences of these climatic changes during the last glacial maximum were that the woodlands of East Africa opened up. On the plateau of South Africa austro-afroalpine vegetation dominated. The south coastal plain was very windy and cold to temperate, while the Namib and Kalahari were respectively hyper-arid and semi-humid. During hyperthermals the vegetation pattern resembled present-day conditions more closely.


2001 ◽  
Vol 30 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Edward C. Little ◽  
Lionel E. Jackson ◽  
Thomas S. James ◽  
Stephen R. Hicock ◽  
Elizabeth R. Leboe

2021 ◽  
pp. 10-17
Author(s):  
Oguz Turkozan

A cycle of glacial and interglacial periods in the Quaternary caused species’ ranges to expand and contract in response to climatic and environmental changes. During interglacial periods, many species expanded their distribution ranges from refugia into higher elevations and latitudes. In the present work, we projected the responses of the five lineages of Testudo graeca in the Middle East and Transcaucasia as the climate shifted from the Last Glacial Maximum (LGM, Mid – Holocene), to the present. Under the past LGM and Mid-Holocene bioclimatic conditions, models predicted relatively more suitable habitats for some of the lineages. The most significant bioclimatic variables in predicting the present and past potential distribution of clades are the precipitation of the warmest quarter for T. g. armeniaca (95.8 %), precipitation seasonality for T. g. buxtoni (85.0 %), minimum temperature of the coldest month for T. g. ibera (75.4 %), precipitation of the coldest quarter for T. g. terrestris (34.1 %), and the mean temperature of the driest quarter for T. g. zarudyni (88.8 %). Since the LGM, we hypothesise that the ranges of lineages have either expanded (T. g. ibera), contracted (T. g. zarudnyi) or remained stable (T. g. terrestris), and for other two taxa (T. g. armeniaca and T. g. buxtoni) the pattern remains unclear. Our analysis predicts multiple refugia for Testudo during the LGM and supports previous hypotheses about high lineage richness in Anatolia resulting from secondary contact.


2017 ◽  
Author(s):  
Brendon J. Quirk ◽  
◽  
Jeffrey R. Moore ◽  
Benjamin J. Laabs ◽  
Mitchell A. Plummer ◽  
...  

Author(s):  
Howasta S. Tahiry ◽  
◽  
Jillian M. Maloney ◽  
Shannon A. Klotsko ◽  
Amy E. Gusick ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document