Wide-area nonlinear robust voltage control strategy for multi-machine power systems

2012 ◽  
Vol 55 (4) ◽  
pp. 1107-1117 ◽  
Author(s):  
Yang Ruan ◽  
RongXiang Yuan
Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2407 ◽  
Author(s):  
Yu Wang ◽  
Yuewu Wang ◽  
Si-Zhe Chen ◽  
Guidong Zhang ◽  
Yun Zhang

The active power filter (APF) is a popular electrical device to eliminate harmonics in power systems. The rational design and effective control of DC-link capacitor voltage are important for implementing APF functions. In this study, the influences from the DC-link voltage on the APF compensating current characteristic and compensation performance are analyzed, and the reason to maintain DC-link voltage at a minimum value is investigated. On this basis, a simplified minimum DC-link voltage control strategy for APF is proposed. Compared with the existing DC-link voltage control strategies, the minimum DC-link voltage value in proposed strategy is only determined by the grid voltage and modulation ratio, reducing the calculation burden and the implementation difficulty in application, avoiding the interference from external parameters on the compensation effect. Additionally, the reference DC-link voltage varies at different values according to the grid voltage and modulation ratio. A shunt APF prototype is established and the experimental results verify the correctness and effectiveness of the analysis and proposed strategy.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Shizhi Lin ◽  
Lei Lin ◽  
Buying Wen

With the increasing penetration rate of distributed renewable energy in power systems, the control strategy of virtual synchronous generator (VSG) is widely used for several years. Some existing VSG control strategies have been able to solve the stability problems caused by the abnormal grid voltage, but the effects of the inertia coefficient and the droop coefficient on the voltage stability are not taken into account. In order to further improve the voltage stability of the microgrid system, a voltage control strategy of VSG based on self-adaptive inertia coefficient and droop coefficient is proposed in this paper. When the voltage is far from the steady state, the increase of the inertia coefficient can decrease the voltage deviation. On the contrary, when it is close to the steady state, the decrease of the inertia coefficient can make the system response speed accelerate. According to the real-time voltage deviation, the droop coefficient can change adaptively to decrease the adjusting time and the voltage deviation during the disturbance. Finally, the simulation model of VSG is built by MATLAB/Simulink for conducting simulation experiments. Compared with other strategies, the correctness and effectiveness of the proposed control strategy are validated.


Author(s):  
Feng Zhang ◽  
Xiaolong Guo ◽  
Xiqiang Chang ◽  
Guowei Fan ◽  
Lianger Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document