Lulu Zhang, Jinhui Li, Xu Li, Jie Zhang, Hong Zhu: Rainfall-induced soil slope failure: stability analysis and probabilistic assessment

2017 ◽  
Vol 12 (5) ◽  
pp. 1175-1175
Author(s):  
Wei Wu
2017 ◽  
Vol 90 (2) ◽  
pp. 863-885 ◽  
Author(s):  
Ashok Kumar Singh ◽  
Jagadish Kundu ◽  
Kripamoy Sarkar

2011 ◽  
Vol 261-263 ◽  
pp. 1709-1713
Author(s):  
Meng Yang ◽  
Xiao Min Liu

This paper introduces a new failure mode pattern of soil slope – the logarithmic spiral slippery fracture. A mathematical model for the logarithmic spiral slippery fracture is established, taking the anti-shear function of the soil-nailing into consideration. The shear of soil-nailing, axial force, and the safety coefficients based on the limiting equilibrium method are derived, leading to an accurate stability analysis of the strengthening of soil slope. A case study shows that the anti-shear function of the soil-nailing can be significant and should not be ignored in engineering design.


2014 ◽  
Vol 501-504 ◽  
pp. 359-367
Author(s):  
Feng Zhou ◽  
Kai Zhang ◽  
Ying Chun Tang

This paper summarizes and analyzes the basic concepts and ecological protection mechanism for expansion geotechnical slope failure mechanism and the resulting impact on the shallow, traction engineering properties such as analysis, proposed ecological slope of expansive soil slope mechanism of action: vegetation system by improving internal slope soil moisture and temperature changes affect the atmosphere and thus effectively reduce the depth. Vegetation root through reinforced anchoring, delay time and improving soil hydration ductility such as the role played good strength enhancement. Vegetation formation can effectively improve the damaged outer slope interface morphology, to restore the ecological environment and landscape effect. Integrating the past experience on expansive soil slope treatment, this paper provide a slope treatment method used in Nanning metro Tunli section, these will provide reference for the expansive soil slope ecological management.


2019 ◽  
Vol 9 (4) ◽  
pp. 4469-4473
Author(s):  
D. A. Mangnejo ◽  
S. J. Oad ◽  
S. A. Kalhoro ◽  
S. Ahmed ◽  
F. H. Laghari ◽  
...  

Slope instability may be a result of change in stress conditions, rise in groundwater table and rainfall. Similarly, many slopes that have been stable for several years can abruptly fail due to changes in geometry, weak soil shear strength or as the effect of an external force. Debris flows (i.e. slope failures) take place without any warning and can have devastating results. So, it is vital to understand the slope failure mechanism and adopt safety prevention measures. Soil nailing is one of the widely used stabilization techniques for soil slopes. In this study, soil nail technique is proposed to upgrade the existing slope in clay. A parametric study was conducted to understand the effects of different nail diameter (i.e. 25mm and 40mm) and nail inclination (i.e. 200, 250, 300, 350 and 400) on slope stability. Morgenstern-Price (i.e. limit equilibrium) method was used to determine the factor of safety of the slope. It was found that the factor of safety of the existing slope improved significantly with three rows of 40mm diameter nail at an inclination of 400.


2020 ◽  
Vol 2 (1) ◽  
pp. 44-57
Author(s):  
Lianheng Zhao ◽  
Nan Qiao ◽  
Zhigang Zhao ◽  
Shi Zuo ◽  
Xiang Wang

Abstract The upper bound limit analysis (UBLA) is one of the key research directions in geotechnical engineering and is widely used in engineering practice. UBLA assumes that the slip surface with the minimum factor of safety (FSmin) is the critical slip surface, and then applies it to slope stability analysis. However, the hypothesis of UBLA has not been systematically verified, which may be due to the fact that the traditional numerical method is difficult to simulate the large deformation. In this study, in order to systematically verify the assumption of UBLA, material point method (MPM), which is suitable to simulate the large deformation of continuous media, is used to simulate the whole process of the slope failure, including the large-scale transportation and deposition of soil mass after slope failure. And a series of comparative studies are conducted on the stability of cohesive slopes using UBLA and MPM. The proposed study indicated that the slope angle, internal friction angle and cohesion have a remarkable effect on the slip surface of the cohesive slope. Also, for stable slopes, the calculation results of the two are relatively close. However, for unstable slopes, the slider volume determined by the UBLA is much smaller than the slider volume determined by the MPM. In other words, for unstable slopes, the critical slip surface of UBLA is very different from the slip surface when the slope failure occurs, and when the UBLA is applied to the stability analysis of unstable slope, it will lead to extremely unfavorable results.


Sign in / Sign up

Export Citation Format

Share Document