scholarly journals Nonlocal regularization of an anisotropic critical state model for sand

2021 ◽  
Author(s):  
Zhiwei Gao ◽  
Xin Li ◽  
Dechun Lu

AbstractMany advanced constitutive models which can capture the strain-softening and state-dependent dilatancy response of sand have been developed. These models can give good prediction of the single soil element behaviour under various loading conditions. But the solution will be highly mesh-dependent when they are used in real boundary value problems due to the strain-softening. They can give mesh-dependent strain localization pattern and bearing capacity of foundations on sand. Nonlocal regularization of an anisotropic critical state sand model is presented. The evolution of void ratio which has a significant influence on strain-softening is assumed to depend on the volumetric strain increment of both the local and neighbouring integration points. The regularization method has been implemented using the explicit stress integration method. The nonlocal model has been used in simulating both drained plane strain compression and the response of a strip footing on dry sand. In plane strain compression, mesh-independent results for the force–displacement relationship and shear band thickness can be obtained when the mesh size is smaller than the internal length. The force–displacement relationship of strip footings predicted by the nonlocal model is much less mesh-sensitive than the local model prediction. The strain localization under the strip footing predicted by the nonlocal model is mesh independent. The regularization method is thus proper for application in practical geotechnical engineering problems.

2011 ◽  
Vol 261-263 ◽  
pp. 1365-1369
Author(s):  
Ping Hu ◽  
Mao Song Huang ◽  
Shao Kun Ma ◽  
Hui Lai Qin

A state-dependent critical state model is employed to analyze strain localization of sand in this paper. The sand model is developed based on the concept of the state-dependent critical state for sands, and an analysis of strain localization is performed on the drained plane strain tests of Hostun sand. The results show that the state-dependent critical state model is capable of simulating the effect of initial state on strain localization compatibly.


2005 ◽  
Vol 495-497 ◽  
pp. 69-76 ◽  
Author(s):  
X.B. Wang

Peak strength, mechanical behavior, and shear band (SB) of anisotropic jointed rock (JR) were modeled by Fast Lagrangian Analysis of Continua (FLAC). The failure criterion of rock was a composite Mohr-Coulomb criterion with tension cut-off and the post-peak constitutive relation was linear strain-softening. An inclined joint was treated as square elements of ideal plastic material beyond the peak strength. A FISH function was written to find automatically elements in the joint. For the lower or higher joint inclination (JI), the higher peak strength and more apparent strain-softening behavior are observed; the failure of JR is due to the slip along the joint and the new generated SBs initiated at joint’s two ends. For the lower JI, the slope of softening branch of stress-strain curve is not concerned with JI since the new and longer SBs’s inclination is not dependent on JI, as can be qualitatively explained by previous analytical solution of post-peak slope of stress-strain curve for rock specimen subjected to shear failure in uniaxial compression based on gradient-dependent plasticity. For the higher JI, the post-peak stress-strain curve becomes steeper as JI increases since the contribution of the new SBs undergoing strain-softening behavior to axial strain of JR increases with JI. For the moderate JI, the lower strength and ideal plastic behavior beyond the elastic stage are found, reflecting that the inclined joint governs the deformation of JR. The present numerical prediction on anisotropic peak strength in plane strain compression qualitatively agrees with triaxial experimental tests of many kinds of rocks. Comparison of the present numerical prediction on JI corresponding to the minimum peak strength of JR and the oversimplified theoretical result by Jaeger shows that Jaeger’s formula has overestimated the value of JI.


Author(s):  
Joel V. Bernier ◽  
Nathan R. Barton ◽  
Jaroslaw Knap

In this study, a multiscale material model is employed to simulate two metal forming processes: 2D plane strain compression and a 3D biaxial bulge test. A generalized Taylor-type polycrystal model is employed to describe the fine scale viscoplastic response of the material, while the coarse scale response is computed using a multiphysics finite element code. The coupling between the local responses of the textured polycrystal and the continuum level is achieved via an adaptive sampling framework, which is shown to greatly reduce the total number of fine scale evaluations required to achieve a specified error tolerance. The anisotropy represented at the fine scale is sufficient to observe strain localization in both forming processes. For the case of idealized plane strain compression, a fairly diffuse yet distinct patterning of plastic strain localization develops in a manner consistent with experimental observations. The application of friction constraints to the compression surfaces—as is present in channel die compression tests—dramatically strengthens and redistributes the localization patterns. The simulated biaxial bulge test also demonstrates strain localization that is in agreement with the locations of diffuse necks in experimental observations. The tests are conducted using a federated multiple-program multiple-data simulation, which allows for load balancing between the coarse and fine scale calculations. Such a simulation framework is capable of efficiently embedding physically robust, but computationally expensive material models in component scale simulations appropriate to design decisions.


Sign in / Sign up

Export Citation Format

Share Document