peak strength
Recently Published Documents


TOTAL DOCUMENTS

169
(FIVE YEARS 80)

H-INDEX

18
(FIVE YEARS 4)

2022 ◽  
Vol 9 ◽  
Author(s):  
Yanbo Zhu ◽  
Shuaisheng Miao ◽  
Hongfei Li ◽  
Yutao Han ◽  
Hengxing Lan

Quaternary loess is widely distributed over the tertiary Hipparion red clay on the Loess Plateau of China. Large-scale loess landslides often occur along the weak contact interface between these two sediment materials. To investigate the failure mode and shear strength characteristics of the loess–Hipparion red clay contact interface, a series of shearing experiments were performed on interface specimens using purpose-built shear equipment. In this article, the relationship between shear strength and interface morphology is discussed, and an empirical shear model of the interface is proposed based on the experimental results and theoretical work. The results indicate that discontinuities between the loess and the Hipparion red clay reduce the shear strength of specimens significantly. The contribution of the contact interface to shear performance including failure mode, shear deformation, and shear strength varies with the interface morphology and the applied normal stress. With low interface roughness or normal stress, sliding failure is likely to occur. With increasing interface roughness and normal stress, the peak strength increases rapidly. With further increase in the interface roughness and normal stress, the increment of peak strength decreases gradually as the failure mode transitions from sliding mode to cutoff mode. A staged shear model that takes the failure mode into consideration is developed to express the non-linear change in the interface shear strength. The shear model’s capability is validated by comparing model estimates with experimental data. This work improves our understanding of shear mechanisms and the importance of considering the effects of interfacial properties in the mechanical behavior of contact interfaces.


2022 ◽  
Author(s):  
Wenjie Liu ◽  
Ke Yang ◽  
Litong Dou ◽  
Zhen Wei ◽  
Xiaolou Chi ◽  
...  

Abstract To explore the dynamic mechanical characteristics of coal-rock combined body (CRCB) load-bearing structures, impact tests were performed on CRCB specimens by using a separated Hopkinson pressure bar test device (SHPB) combined with an ultra-high-speed camera system. The propagation characteristics of stress wave , dynamic stress-strain relationship, energy evolution law, and distribution characteristics of CRCB crushed particles in the impact tests were analyzed. The obtained results showed that: with the increasing of impact velocity, the effect of the wave impedance difference between the CRCB specimens and incident bar on stress wave propagation is gradually weakened. The peak strength (sII) and peak strain of the CRCB had obvious strain-rate effects, the ratio of reflected energy decreases linearly. In addition, with increased impact velocity, the growth rate of the peak strength and ratio of absorbed energy gradually dropped, changing approximately as a power function. Macro-fractures of the CRCB mainly occurred at the coal or rock ends which is far away from the interface. When the stress at the crack tip is greater than the "weakened" coal or rock strength, the crack will continue to develop across the coal and rock interface. With the increasing of impact velocity and rock strength, the crushed coal particles gradually transform from massive to powdering, and the average size of crushed coal blocks decreases, which leads to a gradual increase in the fractal dimension of the CRCB specimens. Therefore, the monitoring and prevention of dynamic loads should be strengthened in the coal mines with thick and hard roofs.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 5) ◽  
Author(s):  
Hanqing Yang ◽  
Xuezhen Wu ◽  
Hongwen Jing ◽  
Liyuan Yu ◽  
Richeng Liu

Abstract Deep geothermal energy is of great strategic importance for the development of the energy industry. In the process of geothermal energy extraction, temperature changes will significantly affect the physical and mechanical properties of the rock mass. To investigate the influence of temperature on the physical and mechanical properties of red sandstones and marbles, the uniaxial compression test, variable-angle shear test, mercury intrusion porosimetry (MIP) test, and SEM test were conducted on the red sandstone and marble specimens treated by 9 temperature levels (from 25°C to 800°C). The results show that the porosity is positively correlated with the temperature regardless of rock types. The peak strength of red sandstones during uniaxial compression increases first when temperature increases from 25°C to 400°C and then decreases when temperature increases from 400°C to 800°C, whereas the peak strength of marbles exhibits a first decreasing (from 25°C to 300°C), then increasing (from 300°C to 600°C) and finally decreasing (from 600°C to 800°C) trend. Similarly, the shear strength and cohesion of red sandstones increase first and then decrease as temperature rises from 25°C to 800°C, despite of the predesigned shearing angle, which is opposite to the variation in frictional angle. The variations in physical and mechanical behavior are closely related to the expansion of the constituent grains or groundmass which make up the rock composition and closure of pores. Additionally, the temperature in the range from 400°C to 600°C plays an important role to evaluate the variations in the physical and mechanical characteristics of red sandstones and marbles after high-temperature exposure, because of the stress, strain, and porosity change dramatically.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 55
Author(s):  
Xianda Yang ◽  
Lihui Sun ◽  
Jiale Song ◽  
Bensheng Yang ◽  
Chengren Lan ◽  
...  

Bond strength is one of the most important parameters and can affect the macroscopic mechanical properties and the damage state of rock to some degree. Coarse-grained sandstone was studied using the controlled variable method. The influence of parallel bond strength on the peak strength and failure mode of coarse-grained sandstone was simulated, and the evolution law of peak strength and the failure mode of bond strength were comprehensively analyzed. The results show that the peak strength of the rock was positively correlated with the bond strength; the difference in quantity between the tensile and shear cracks was negatively correlated with tensile bond strength and positively correlated with shear bond strength. With a tensile-shear bond strength ratio of less than 0.5, the peak strength of the rock was usually stable at the certain extreme value under a constant tensile bond strength. The tensile cracks were negatively correlated with the tensile-shear bond strength ratio, and the shear cracks were positively correlated with the tensile-shear bond strength ratio. The main failure mode of the coarse-grained sandstone in the weakly cemented stratum of the Hongqinghe coal mine is shear failure. The research results can be used to guide the ground control of other mine stopes or roadways with weak cementation lithology.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yong Han ◽  
Yuemao Zhao ◽  
Jinglong Li

Cracks play an important role in evaluating the strength and failure behavior of engineering rock mass. In order to increase the understanding of strength and failure mechanism of precracked rock, crack propagation and coalescence from preexisting cracks under true triaxial compression are investigated using true triaxial compression tests and Cellular Automata Software for engineering Rockmass fracturing process (CASRock). Three types of specimens were studied experimentally and numerically. Experimental and numerical results show that both the preferential angle and areal intensity of preexisting cracks can affect the compressive strength and failure behavior of the specimens. The peak strength firstly decreases and then increases with increase of the preferential angle. Also, the peak strength nonlinearly decreases with the increase of cracks’ areal intensity. The numerical results show that the crack initiation and coalescence are observed and characterized from the inner and outer tips of preexisting cracks in specimens containing single crack and multiple parallel cracks. The main shear failure in the specimen containing multiple unparallel preexisting cracks initiate and propagate from one of the macroscopic preexisting cracks, and other preexisting cracks do not initiate, propagate, and coalesce until reaching the peak strength.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Long Cheng ◽  
Hui Wang ◽  
Xu Chang ◽  
Yewei Chen ◽  
Feilu Xu ◽  
...  

Weak and hard inhomogeneous rock formations are typically encountered during tunnel excavations. The physical and mechanical properties and geological conditions of these rock formations vary significantly; thus, it is crucial to investigate the mechanical characteristics of deep bedded composite rock formations. Three-dimensional (3D) scanning and 3D printing were used to prepare composite rock specimens to simulate natural rock laminae. Triaxial compression tests were conducted to determine the influence of the bedding angle, rock composition, and confining pressure on the mechanical properties of the composite rock specimens. The anisotropic strength characteristics and the damage patterns of the composite rock specimens were analyzed under different confining pressures, and the failure mechanism during triaxial loading was revealed. The results show that the damage of the composite rock specimens with a bedding structure depends on the bedding dip angle and the rock formation. The stress-strain curves and peak strengths of the composite rock specimens have anisotropic characteristics corresponding to their failure modes. As the bedding dip angle increases, the peak strength of the three groups of specimens first decreases and then increases under different confining pressure levels. The compressive strength has a nonlinear relationship with the confining pressure, and the difference between the compressive strengths of specimens with different inclination angles decreases as the confining pressure increases. The Hoek–Brown strength criterion is a good predictor of the nonlinear increase in peak strength of the composite rock specimens under different confining pressures. The specimen with a β  = 60°dip angle shows the most significant increase in the strength difference with increasing confining pressure. The results can be used as a reference for testing and analyzing the anisotropic mechanical properties of bedded rock masses.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Chuanwei Zang ◽  
Hongmo Zhu ◽  
Miao Chen ◽  
Shuo Yang ◽  
Liu Yang ◽  
...  

Understanding the deformation failure behavior of the composite rock strata has important implications for deep underground engineering construction. Based on the uniaxial compression laboratory test of the specimens of composite rock strata containing holes, the microscopic parameters in the particle discrete element simulation are firstly calibrated. Then, the mechanical properties and failure characteristics of the composite rock strata with holes under different confining pressures are studied. The results show that different dip angles and confining pressures have significant effects on the peak strength and elastic modulus of the specimens. Under the same confining pressure, the peak strength and elastic modulus decrease first and then increase with the increasing dip angle. As the dip angle is constant, both the peak strength and elastic modulus gradually increase with the increase in confining pressure. It shows that the first area to be damaged in composite rock strata transfers from soft rock to hard rock with the increase in dip angle. With the increase in confining pressure, the range of tensile stress concentration area decreases substantially, while the range of compressive stress concentration area changes less.


2021 ◽  
Vol 11 (23) ◽  
pp. 11244
Author(s):  
Jinxing Lyu ◽  
Jisen Shu ◽  
Liu Han ◽  
Gerson S. V. Tovele ◽  
Tao Chen

The non-uniformly distributed calcareous concretion among the oil shale in the Junggar basin of China has led to the difficulty in achieving the slope stability. This paper presents the numerical simulation of the behavior of oil shale with calcareous concretion via the Particle Flow Code (PFC2D) program based on the trial experimental test results. The critical parameters investigated in this research covered the size, distribution, strength, and number of the calcareous concretion. The following conclusions can be drawn based on the discussions and analysis: (1) the hard concretion always results in the high compressive strength of the specimen compared with that without concretion; (2) when the radius of the concretion size raised from 2.5 mm to 20 mm, the peak strength of tested specimens is approximately 50 MPa, whereas, the specimen with large concretion is much more ductile under compression; (3) the compressive behavior of tested specimens is similar even when the position of the concretion is variable; and (4) different from the specimens with only one concretion, these specimens contained two concretions featured with the double “X” failure mode. Meanwhile, the peak strength of the specimens with two hard concretions is about 2.5 times that of its counterparts with two soft concretions. The numerical simulation results are meaningful in guiding the design and analysis of the oil shale slope with the concretion.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhenhua Wang ◽  
Jun Fang ◽  
Gang Wang ◽  
Yifan Jiang ◽  
Dongwei Li

The uniaxial compression tests were conducted on granite samples with different joint dip angles to more favorably explore the influences of the nonconsecutive joint on mechanical properties and deformation characteristics of the rock mass. The stress-strain curves, deformation and strength characteristics, and energy evolution process of the samples were analyzed. Numerical simulation using particle flow code (PFC) is employed to study the crack propagation process. The mode of jointed and fractured rock was investigated. The research results showed a significant reduction in both the peak strength and elastic modulus of jointed samples compared with intact ones: the peak strength and elastic modulus drop to the minimum at the joint dip angle of about 45°, especially for the peak strength, which takes up about 55% of the intact samples. The fractured samples’ total energy, elastic strain energy, and dissipated energy during the uniaxial compression drop significantly relative to intact samples. The proportion of the fracture modes varies with different joint dip angles, in which the ratio of shear cracks grows at first and then declines, with the highest balance at the dip angle of 45°. The damage stress’s sensitivity to the dip angle change is greater than that of the peak stress, with reduction amplitude more extensive than the latter.


Sign in / Sign up

Export Citation Format

Share Document