scholarly journals On the doubly connected domination number of a graph

2006 ◽  
Vol 4 (1) ◽  
pp. 34-45 ◽  
Author(s):  
Joanna Cyman ◽  
Magdalena Lemańska ◽  
Joanna Raczek

AbstractFor a given connected graph G = (V, E), a set $$D \subseteq V(G)$$ is a doubly connected dominating set if it is dominating and both 〈D〉 and 〈V (G)-D〉 are connected. The cardinality of the minimum doubly connected dominating set in G is the doubly connected domination number. We investigate several properties of doubly connected dominating sets and give some bounds on the doubly connected domination number.

2015 ◽  
Vol 26 (02) ◽  
pp. 229-240
Author(s):  
Yihua Ding ◽  
James Z. Wang ◽  
Pradip K. Srimani

In this paper, we propose two new self-stabilizing algorithms, MWCDS-C and MWCDS-D, for minimal weakly connected dominating sets in an arbitrary connected graph. Algorithm MWCDS-C stabilizes in O(n4) steps using an unfair central daemon and space requirement at each node is O(log n) bits at each node for an arbitrary connected graph with n nodes; it uses a designated node while other nodes are identical and anonymous. Algorithm MWCDS-D stabilizes using an unfair distributed daemon with identical time and space complexities, but it assumes unique node IDs. In the literature, the best reported stabilization time for a minimal weakly connected dominating set algorithm is O(nmA) under a distributed daemon [1], where m is the number of edges and A is the number of moves to construct a breadth-first tree.


2014 ◽  
Vol 07 (04) ◽  
pp. 1450054
Author(s):  
Benjier H. Arriola ◽  
Sergio R. Canoy

Let G be a simple connected graph. A connected dominating set S ⊂ V(G) is called a doubly connected dominating set of G if the subgraph 〈V(G)\S〉 induced by V(G)\S is connected. We show that given any three positive integers a, b, and c with 4 ≤ a ≤ b ≤ c, where b ≤ 2a, there exists a connected graph G such that a = γr(G), b = γtr(G), and c = γcc(G), where γr, γtr, and γcc are, respectively, the restrained domination, total restrained domination, and doubly connected domination parameters. Also, we characterize the doubly connected dominating sets in the join of any graphs and Cartesian product of some graphs. The corresponding doubly connected domination numbers of these graphs are also determined.


2012 ◽  
Vol 11 (4) ◽  
pp. 91-98 ◽  
Author(s):  
Mahadevan G ◽  
A Selvam Avadayappan ◽  
Twinkle Johns

A subset S of vertices in a graph G = (V,E) is a dominating set if every vertex in V-S is adjacent to atleast one vertex in S. A dominating set S of a connected graph G is called a connected dominating set if the induced sub graph < S > is connected. A set S is called a global dominating set of G if S is a dominating set of both G and . A subset S of vertices of a graph G is called a global connected dominating set if S is both a global dominating and a connected dominating set. The global connected domination number is the minimum cardinality of a global connected dominating set of G and is denoted by γgc(G). In this paper we characterize the classes of graphs for which γgc(G) + χ(G) = 2n-5 and 2n-6 of global connected domination number and chromatic number and characterize the corresponding extremal graphs.


A subset S of V of a non-trivial connected graph G is called a Blast dominating set (BD-set), if S is a connected dominating set and the induced sub graph 𝑽 − 𝑺 is triple connected. The minimum cardinality taken over all such Blast Dominating sets is called the Blast Domination Number (BDN) of G and is denoted as, 𝜸𝒄 𝒕𝒄 (𝑮). In this article, let us mull over the generalized transformation graphs 𝑮 𝒂𝒃 and get hold of the analogous lexis of the Blast domination numbers for all the rage, transformation graphs, 𝑮 𝒂𝒃 and their complement graphs, 𝑮 𝒂 𝒃 for linear and circular graphs.


2013 ◽  
Vol 05 (03) ◽  
pp. 1350009
Author(s):  
O. FAVARON ◽  
R. KHOEILAR ◽  
S. M. SHEIKHOLESLAMI

A set S of vertices of a graph G is a total outer-connected dominating set if every vertex in V(G) is adjacent to some vertex in S and the subgraph G[V\S] induced by V\S is connected. The total outer-connected domination numberγ toc (G) is the minimum size of such a set. The total outer-connected domination subdivision number sd γ toc (G) is the minimum number of edges that must be subdivided in order to increase the total outer-connected domination number. We prove the existence of sd γ toc (G) for every connected graph G of order at least 3 and give upper bounds on it in some classes of graphs.


10.37236/953 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Adriana Hansberg ◽  
Dirk Meierling ◽  
Lutz Volkmann

A set $D\subseteq V$ of vertices is said to be a (connected) distance $k$-dominating set of $G$ if the distance between each vertex $u\in V-D$ and $D$ is at most $k$ (and $D$ induces a connected graph in $G$). The minimum cardinality of a (connected) distance $k$-dominating set in $G$ is the (connected) distance $k$-domination number of $G$, denoted by $\gamma_k(G)$ ($\gamma_k^c(G)$, respectively). The set $D$ is defined to be a total $k$-dominating set of $G$ if every vertex in $V$ is within distance $k$ from some vertex of $D$ other than itself. The minimum cardinality among all total $k$-dominating sets of $G$ is called the total $k$-domination number of $G$ and is denoted by $\gamma_k^t(G)$. For $x\in X\subseteq V$, if $N^k[x]-N^k[X-x]\neq\emptyset$, the vertex $x$ is said to be $k$-irredundant in $X$. A set $X$ containing only $k$-irredundant vertices is called $k$-irredundant. The $k$-irredundance number of $G$, denoted by $ir_k(G)$, is the minimum cardinality taken over all maximal $k$-irredundant sets of vertices of $G$. In this paper we establish lower bounds for the distance $k$-irredundance number of graphs and trees. More precisely, we prove that ${5k+1\over 2}ir_k(G)\geq \gamma_k^c(G)+2k$ for each connected graph $G$ and $(2k+1)ir_k(T)\geq\gamma_k^c(T)+2k\geq |V|+2k-kn_1(T)$ for each tree $T=(V,E)$ with $n_1(T)$ leaves. A class of examples shows that the latter bound is sharp. The second inequality generalizes a result of Meierling and Volkmann and Cyman, Lemańska and Raczek regarding $\gamma_k$ and the first generalizes a result of Favaron and Kratsch regarding $ir_1$. Furthermore, we shall show that $\gamma_k^c(G)\leq{3k+1\over2}\gamma_k^t(G)-2k$ for each connected graph $G$, thereby generalizing a result of Favaron and Kratsch regarding $k=1$.


Author(s):  
Reynaldo V. Mollejon ◽  
Sergio R. Canoy

Let [Formula: see text] be a connected graph of order [Formula: see text]. A subset [Formula: see text] is a double hop dominating set (or a double [Formula: see text]-step dominating set) if [Formula: see text], where [Formula: see text], for each [Formula: see text]. The smallest cardinality of a double hop dominating set of [Formula: see text], denoted by [Formula: see text], is the double hop domination number of [Formula: see text]. In this paper, we investigate the concept of double hop dominating sets and study it for graphs resulting from some binary operations.


2020 ◽  
Vol 12 (04) ◽  
pp. 2050052 ◽  
Author(s):  
Lidan Pei ◽  
Xiangfeng Pan

Let [Formula: see text] be a positive integer and [Formula: see text] be a simple connected graph. The eccentric distance sum of [Formula: see text] is defined as [Formula: see text], where [Formula: see text] is the maximum distance from [Formula: see text] to any other vertex and [Formula: see text] is the sum of all distances from [Formula: see text]. A set [Formula: see text] is a distance [Formula: see text]-dominating set of [Formula: see text] if for every vertex [Formula: see text], [Formula: see text] for some vertex [Formula: see text]. The minimum cardinality among all distance [Formula: see text]-dominating sets of [Formula: see text] is called the distance [Formula: see text]-domination number [Formula: see text] of [Formula: see text]. In this paper, the trees among all [Formula: see text]-vertex trees with distance [Formula: see text]-domination number [Formula: see text] having the minimal eccentric distance sum are determined.


2017 ◽  
Vol 09 (05) ◽  
pp. 1750069 ◽  
Author(s):  
R. Vasanthi ◽  
K. Subramanian

Let [Formula: see text] be a simple and connected graph. A dominating set [Formula: see text] is said to be a vertex covering transversal dominating set if it intersects every minimum vertex covering set of [Formula: see text]. The vertex covering transversal domination number [Formula: see text] is the minimum cardinality among all vertex covering transversal dominating sets of [Formula: see text]. A vertex covering transversal dominating set of minimum cardinality [Formula: see text] is called a minimum vertex covering transversal dominating set or simply a [Formula: see text]-set. In this paper, we prove some general theorems on the vertex covering transversal domination number of a simple connected graph. We also provide some results about [Formula: see text]-sets and try to classify those sets based on their intersection with the minimum vertex covering sets.


2021 ◽  
Vol 14 (3) ◽  
pp. 1015-1023
Author(s):  
Jerson Saguin Mohamad ◽  
Helen M. Rara

A set S of vertices in a connected graph G is a resolving hop dominating set of G if S is a resolving set in G and for every vertex v ∈ V (G) \ S there exists u ∈ S such that dG(u, v) = 2. The smallest cardinality of such a set S is called the resolving hop domination number of G. This paper presents the characterizations of the resolving hop dominating sets in the join, corona and lexicographic product of two graphs and determines the exact values of their corresponding resolving hop domination number.


Sign in / Sign up

Export Citation Format

Share Document