A poset hierarchy

2006 ◽  
Vol 4 (2) ◽  
pp. 225-241 ◽  
Author(s):  
Mirna Džamonja ◽  
Katherine Thompson

AbstractThis article extends a paper of Abraham and Bonnet which generalised the famous Hausdorff characterisation of the class of scattered linear orders. They gave an inductively defined hierarchy that characterised the class of scattered posets which do not have infinite incomparability antichains (i.e. have the FAC). We define a larger inductive hierarchy κℌ* which characterises the closure of the class of all κ-well-founded linear orders under inversions, lexicographic sums and FAC weakenings. This includes a broader class of “scattered” posets that we call κ-scattered. These posets cannot embed any order such that for every two subsets of size < κ, one being strictly less than the other, there is an element in between. If a linear order has this property and has size κ it is unique and called ℚ(κ). Partial orders such that for every a < b the set {x: a < x < b} has size ≥ κ are called weakly κ-dense, and posets that do not have a weakly κ-dense subset are called strongly κ-scattered. We prove that κℌ* includes all strongly κ-scattered FAC posets and is included in the class of all FAC κ-scattered posets. For κ = ℵ0 the notions of scattered and strongly scattered coincide and our hierarchy is exactly aug(ℌ) from the Abraham-Bonnet theorem.

2011 ◽  
Vol 41 ◽  
pp. 25-67 ◽  
Author(s):  
L. Xia ◽  
V. Conitzer

Usually a voting rule requires agents to give their preferences as linear orders. However, in some cases it is impractical for an agent to give a linear order over all the alternatives. It has been suggested to let agents submit partial orders instead. Then, given a voting rule, a profile of partial orders, and an alternative (candidate) c, two important questions arise: first, is it still possible for c to win, and second, is c guaranteed to win? These are the possible winner and necessary winner problems, respectively. Each of these two problems is further divided into two sub-problems: determining whether c is a unique winner (that is, c is the only winner), or determining whether c is a co-winner (that is, c is in the set of winners). We consider the setting where the number of alternatives is unbounded and the votes are unweighted. We completely characterize the complexity of possible/necessary winner problems for the following common voting rules: a class of positional scoring rules (including Borda), Copeland, maximin, Bucklin, ranked pairs, voting trees, and plurality with runoff.


1989 ◽  
Vol 54 (3) ◽  
pp. 865-874 ◽  
Author(s):  
Alain Louveau

AbstractWe prove two results about the embeddability relation between Borel linear orders: For η a countable ordinal, let 2η (resp. 2< η) be the set of sequences of zeros and ones of length η (resp. < η), equipped with the lexicographic ordering. Given a Borel linear order X and a countable ordinal ξ, we prove the following two facts.(a) Either X can be embedded (in a (X, ξ) way) in 2ωξ or 2ωξ + 1 continuously embeds in X.(b) Either X can embedded (in a (X, ξ) way) in 2<ωξ or 2ωξ continuously embeds in X. These results extend previous work of Harrington, Shelah and Marker.


2003 ◽  
Vol 34 (3) ◽  
pp. 516-526 ◽  
Author(s):  
Yuji Takano

Since the emergence of Kayne's (1994) stimulating proposal for an antisymmetric theory of phrase structure and linear order, much work has been devoted to arguing for or against his theory as well as discussing its empirical predictions. As a result, for a number of phenomena involving rightward positioning, such as rightward adjuncts, heavy NP shift, extraposition, postverbal subjects, and postverbal constituents in OV languages, there now exist both an approach consistent with Kayne's theory (the antisymmetric approach) and another not consistent with it (the symmetric approach). In such a situation, it is often difficult to show on empirical grounds that one approach is superior to the other (see Rochemont and Culicover 1997). In what follows, I describe this situation with respect to two well-known phenomena in English: rightward positioning of adjuncts and heavy NP shift. For each of these phenomena, the symmetric and antisymmetric approaches have been proposed, and both approaches can correctly account for the data discussed in previous studies. Here, I examine the approaches from a novel point of view, showing that data involving the licensing of negative polarity items allow us to differentiate them and to decide which is the right one for each of the two empirical domains. Interestingly, the relevant facts lead to different conclusions for the two phenomena. The results have important implications for the antisymmetric view of syntax.


2008 ◽  
Vol 73 (4) ◽  
pp. 1433-1457 ◽  
Author(s):  
Miloš S. Kurilić ◽  
Boris Šobot

AbstractThe game is played on a complete Boolean algebra , by two players. White and Black, in κ-many moves (where κ is an infinite cardinal). At the beginning White chooses a non-zero element p ∈ . In the α-th move White chooses pα ∈ (0, p) and Black responds choosing iα ∈{0, 1}. White winsthe play iff . where and .The corresponding game theoretic properties of c.B.a.'s are investigated. So, Black has a winning strategy (w.s.) if κ ≥ π() or if contains a κ-closed dense subset. On the other hand, if White has a w.s., then κ ∈ . The existence of w.s. is characterized in a combinatorial way and in terms of forcing. In particular, if 2<κ = κ ∈ Reg and forcing by preserves the regularity of κ, then White has a w.s. iff the power 2κ is collapsed to κ in some extension. It is shown that, under the GCH, for each set S ⊆ Reg there is a c.B.a. such that White (respectively. Black) has a w.s. for each infinite cardinal κ ∈ S (resp. κ ∉ S). Also it is shown consistent that for each κ ∈ Reg there is a c.B.a. on which the game is undetermined.


1987 ◽  
Vol 52 (3) ◽  
pp. 681-688
Author(s):  
Henry A. Kierstead

If σ is the order type of a recursive linear order which has a nontrivial automorphism, we let denote the least complexity in the arithmetical hierarchy such that every recursive order of type σ has a nontrivial automorphism of complexity . In Chapter 16 of his book Linear orderings [R], Rosenstein discussed the problem of determining for certain order types σ. For example Rosenstein proved that , where ζ is the order type of the integers, by constructing a recursive linear order of type ζ which has no nontrivial Σ1-automorphism and showing that every recursive linear order of type ζ has a nontrivial Π1-automorphism. Rosenstein also considered linear orders of order type 2 · η, where 2 is the order type of a two-element chain and η is the order type of the rational numbers. It is easily seen that any recursive linear order of type 2 · η has a nontrivial ⊿2-automorphism; he showed that there is a recursive linear order of type 2 · η that has no nontrivial Σ1-automorphism. This left the question, posed in [R] and also by Lerman and Rosenstein in [LR], of whether or ⊿2. The main result of this article is that :


1996 ◽  
Vol 119 (4) ◽  
pp. 631-643 ◽  
Author(s):  
J. K. Truss

The intuition behind the notion of a cycle-free partial order (CFPO) is that it should be a partial ordering (X, ≤ ) in which for any sequence of points (x0, x1;…, xn–1) with n ≤ 4 such that xi is comparable with xi+1 for each i (indices taken modulo n) there are i and j with j ╪ i, i + 1 such that xj lies between xi and xi+1. As its turn out however this fails to capture the intended class, and a more involved definition, in terms of the ‘Dedekind–MacNeille completion’ of X was given by Warren[5]. An alternative definition involving the idea of a betweenness relation was proposed by P. M. Neumann [1]. It is the purpose of this paper to clarify the connections between these definitions, and indeed between the ideas of semi-linear order (or ‘tree’), CFPO, and the betweenness relations described in [1]. In addition I shall tackle the issue of the axiomatizability of the class of CFPOs.


2016 ◽  
Vol 16 (02) ◽  
pp. 1650008 ◽  
Author(s):  
Mohammad Golshani ◽  
Saharon Shelah

For an ultrafilter [Formula: see text] on a cardinal [Formula: see text] we wonder for which pair [Formula: see text] of regular cardinals, we have: for any [Formula: see text]-saturated dense linear order [Formula: see text] has a cut of cofinality [Formula: see text] We deal mainly with the case [Formula: see text]


1998 ◽  
Vol 94 (1-3) ◽  
pp. 253-261 ◽  
Author(s):  
Theodore A. Slaman ◽  
W.Hugh Woodin
Keyword(s):  

2010 ◽  
Vol 81 (2) ◽  
pp. 195-207 ◽  
Author(s):  
BOORAPA SINGHA ◽  
JINTANA SANWONG ◽  
R. P. SULLIVAN

AbstractMarques-Smith and Sullivan [‘Partial orders on transformation semigroups’, Monatsh. Math.140 (2003), 103–118] studied various properties of two partial orders on P(X), the semigroup (under composition) consisting of all partial transformations of an arbitrary set X. One partial order was the ‘containment order’: namely, if α,β∈P(X) then α⊆β means xα=xβ for all x∈dom α, the domain of α. The other order was the so-called ‘natural order’ defined by Mitsch [‘A natural partial order for semigroups’, Proc. Amer. Math. Soc.97(3) (1986), 384–388] for any semigroup. In this paper, we consider these and other orders defined on the symmetric inverse semigroup I(X) and the partial Baer–Levi semigroup PS(q). We show that there are surprising differences between the orders on these semigroups, concerned with their compatibility with respect to composition and the existence of maximal and minimal elements.


1983 ◽  
Vol 48 (2) ◽  
pp. 369-376 ◽  
Author(s):  
Dev Kumar Roy

This paper looks at linear orders in the following way. A preordering is given, which is linear and recursively enumerable. By performing the natural identification, one obtains a linear order for which equality is not necessarily recursive. A format similar to Metakides and Nerode's [3] is used to study these linear orders. In effective studies of linear orders thus far, the law of antisymmetry (x ≦ y ∧ y ≦ x ⇒ y) has been assumed, so that if the order relation x ≦ y is r.e. then x < y is also r.e. Here the assumption is dropped, so that x < y may not be r.e. and the equality relation may not be recursive; the possibility that equality is not recursive leads to new twists which sometimes lead to negative results.Reported here are some interesting preliminary results with simple proofs, which are obtained if one looks at these objects with a view to doing recursion theory in the style of Metakides and Nerode. (This style, set in [3], is seen in many subsequent papers by Metakides and Nerode, Kalantari, Remmel, Retzlaff, Shore, and others, e.g. [1], [4], [6], [7], [8], [11]. In a sequel, further investigations will be reported which look at r.e. presented linear orders in this fashion and in the context of Rosenstein's comprehensive work [10].Obviously, only countable linear orders are under consideration here. For recursion-theoretic notation and terminology see Rogers [9].


Sign in / Sign up

Export Citation Format

Share Document