scholarly journals Determining Possible and Necessary Winners Given Partial Orders

2011 ◽  
Vol 41 ◽  
pp. 25-67 ◽  
Author(s):  
L. Xia ◽  
V. Conitzer

Usually a voting rule requires agents to give their preferences as linear orders. However, in some cases it is impractical for an agent to give a linear order over all the alternatives. It has been suggested to let agents submit partial orders instead. Then, given a voting rule, a profile of partial orders, and an alternative (candidate) c, two important questions arise: first, is it still possible for c to win, and second, is c guaranteed to win? These are the possible winner and necessary winner problems, respectively. Each of these two problems is further divided into two sub-problems: determining whether c is a unique winner (that is, c is the only winner), or determining whether c is a co-winner (that is, c is in the set of winners). We consider the setting where the number of alternatives is unbounded and the votes are unweighted. We completely characterize the complexity of possible/necessary winner problems for the following common voting rules: a class of positional scoring rules (including Borda), Copeland, maximin, Bucklin, ranked pairs, voting trees, and plurality with runoff.

2016 ◽  
Vol 57 ◽  
pp. 573-591 ◽  
Author(s):  
Omer Lev ◽  
Jeffrey S. Rosenschein

In multiagent systems, social choice functions can help aggregate the distinct preferences that agents have over alternatives, enabling them to settle on a single choice. Despite the basic manipulability of all reasonable voting systems, it would still be desirable to find ways to reach plausible outcomes, which are stable states, i.e., a situation where no agent would wish to change its vote. One possibility is an iterative process in which, after everyone initially votes, participants may change their votes, one voter at a time. This technique, explored in previous work, converges to a Nash equilibrium when Plurality voting is used, along with a tie-breaking rule that chooses a winner according to a linear order of preferences over candidates. In this paper, we both consider limitations of the iterative voting method, as well as expanding upon it. We demonstrate the significance of tie-breaking rules, showing that no iterative scoring rule converges for all tie-breaking. However, using a restricted tie-breaking rule (such as the linear order rule used in previous work) does not by itself ensure convergence. We prove that in addition to plurality, the veto voting rule converges as well using a linear order tie-breaking rule. However, we show that these two voting rules are the only scoring rules that converge, regardless of tie-breaking mechanism.


Author(s):  
Sushmita Gupta ◽  
Pallavi Jain ◽  
Saket Saurabh ◽  
Nimrod Talmon

Multiwinner elections have proven to be a fruitful research topic with many real world applications. We contribute to this line of research by improving the state of the art regarding the computational complexity of computing good committees. More formally, given a set of candidates C, a set of voters V, each ranking the candidates according to their preferences, and an integer k; a multiwinner voting rule identifies a committee of size k, based on these given voter preferences. In this paper we consider several utilitarian and egailitarian OWA (ordered weighted average) scoring rules, which are an extensively researched family of rules (and a subfamily of the family of committee scoring rules). First, we improve the result of Betzler et al. [JAIR, 2013], which gave a O(n^n) algorithm for computing winner under the Chamberlin Courant rule (CC), where n is the number of voters; to a running time of O(2^n), which is optimal. Furthermore, we study the parameterized complexity of the Pessimist voting rule and describe a few tractable and intractable cases. Apart from such utilitarian voting rules, we extend our study and consider egalitarian median and egalitarian mean (both committee scoring rules), showing some tractable and intractable results, based on nontrivial structural observations.


2006 ◽  
Vol 4 (2) ◽  
pp. 225-241 ◽  
Author(s):  
Mirna Džamonja ◽  
Katherine Thompson

AbstractThis article extends a paper of Abraham and Bonnet which generalised the famous Hausdorff characterisation of the class of scattered linear orders. They gave an inductively defined hierarchy that characterised the class of scattered posets which do not have infinite incomparability antichains (i.e. have the FAC). We define a larger inductive hierarchy κℌ* which characterises the closure of the class of all κ-well-founded linear orders under inversions, lexicographic sums and FAC weakenings. This includes a broader class of “scattered” posets that we call κ-scattered. These posets cannot embed any order such that for every two subsets of size < κ, one being strictly less than the other, there is an element in between. If a linear order has this property and has size κ it is unique and called ℚ(κ). Partial orders such that for every a < b the set {x: a < x < b} has size ≥ κ are called weakly κ-dense, and posets that do not have a weakly κ-dense subset are called strongly κ-scattered. We prove that κℌ* includes all strongly κ-scattered FAC posets and is included in the class of all FAC κ-scattered posets. For κ = ℵ0 the notions of scattered and strongly scattered coincide and our hierarchy is exactly aug(ℌ) from the Abraham-Bonnet theorem.


1989 ◽  
Vol 54 (3) ◽  
pp. 865-874 ◽  
Author(s):  
Alain Louveau

AbstractWe prove two results about the embeddability relation between Borel linear orders: For η a countable ordinal, let 2η (resp. 2< η) be the set of sequences of zeros and ones of length η (resp. < η), equipped with the lexicographic ordering. Given a Borel linear order X and a countable ordinal ξ, we prove the following two facts.(a) Either X can be embedded (in a (X, ξ) way) in 2ωξ or 2ωξ + 1 continuously embeds in X.(b) Either X can embedded (in a (X, ξ) way) in 2<ωξ or 2ωξ continuously embeds in X. These results extend previous work of Harrington, Shelah and Marker.


2007 ◽  
Vol 97 (1) ◽  
pp. 150-168 ◽  
Author(s):  
Gilat Levy

In this paper I analyze the effect of transparency on decision making in committees. I focus on committees whose members are motivated by career concerns. The main result is that when the decision-making process is secretive (when individual votes are not revealed to the public), committee members comply with preexisting biases. For example, if the voting rule demands a supermajority to accept a reform, individuals vote more often against reforms. Transparent committees are therefore more likely to accept reforms. I also find that coupled with the right voting rule, a secretive procedure may induce better decisions than a transparent one. (JEL D71, D72)


2000 ◽  
Vol 03 (01n04) ◽  
pp. 181-194 ◽  
Author(s):  
Dominique Lepelley ◽  
Ahmed Louichi ◽  
Fabrice Valognes

All voting procedures are susceptible to give rise, if not to paradoxes, at least to violations of some democratic principles. In this paper, we evaluate and compare the propensity of various voting rules -belonging to the class of scoring rules- to satisfy two versions of the majority principle. We consider the asymptotic case where the numbers of voters tends to infinity and, for each rule, we study with the help of Monte Carlo methods how this propensity varies as a function of the number of candidates.


1987 ◽  
Vol 52 (3) ◽  
pp. 681-688
Author(s):  
Henry A. Kierstead

If σ is the order type of a recursive linear order which has a nontrivial automorphism, we let denote the least complexity in the arithmetical hierarchy such that every recursive order of type σ has a nontrivial automorphism of complexity . In Chapter 16 of his book Linear orderings [R], Rosenstein discussed the problem of determining for certain order types σ. For example Rosenstein proved that , where ζ is the order type of the integers, by constructing a recursive linear order of type ζ which has no nontrivial Σ1-automorphism and showing that every recursive linear order of type ζ has a nontrivial Π1-automorphism. Rosenstein also considered linear orders of order type 2 · η, where 2 is the order type of a two-element chain and η is the order type of the rational numbers. It is easily seen that any recursive linear order of type 2 · η has a nontrivial ⊿2-automorphism; he showed that there is a recursive linear order of type 2 · η that has no nontrivial Σ1-automorphism. This left the question, posed in [R] and also by Lerman and Rosenstein in [LR], of whether or ⊿2. The main result of this article is that :


2006 ◽  
Vol 100 (2) ◽  
pp. 209-217 ◽  
Author(s):  
DAVID AUSTEN-SMITH ◽  
TIMOTHY J. FEDDERSEN

A deliberative committee is a group of at least two individuals who first debate about what alternative to choose prior to these same individuals voting to determine the choice. We argue, first, that uncertainty about individuals' private preferences is necessary for full information sharing and, second, demonstrate in a very general setting that the condition under which unanimity can support full information revelation in debate amounts to it being common knowledge that all committee members invariably share identical preferences over the alternatives. It follows that if ever there exists an equilibrium with fully revealing debate under unanimity rule, there exists an equilibrium with fully revealing debate under any voting rule. Moreover, the converse is not true of majority rule if there is uncertainty about individuals' preferences.


1996 ◽  
Vol 119 (4) ◽  
pp. 631-643 ◽  
Author(s):  
J. K. Truss

The intuition behind the notion of a cycle-free partial order (CFPO) is that it should be a partial ordering (X, ≤ ) in which for any sequence of points (x0, x1;…, xn–1) with n ≤ 4 such that xi is comparable with xi+1 for each i (indices taken modulo n) there are i and j with j ╪ i, i + 1 such that xj lies between xi and xi+1. As its turn out however this fails to capture the intended class, and a more involved definition, in terms of the ‘Dedekind–MacNeille completion’ of X was given by Warren[5]. An alternative definition involving the idea of a betweenness relation was proposed by P. M. Neumann [1]. It is the purpose of this paper to clarify the connections between these definitions, and indeed between the ideas of semi-linear order (or ‘tree’), CFPO, and the betweenness relations described in [1]. In addition I shall tackle the issue of the axiomatizability of the class of CFPOs.


2016 ◽  
Vol 16 (02) ◽  
pp. 1650008 ◽  
Author(s):  
Mohammad Golshani ◽  
Saharon Shelah

For an ultrafilter [Formula: see text] on a cardinal [Formula: see text] we wonder for which pair [Formula: see text] of regular cardinals, we have: for any [Formula: see text]-saturated dense linear order [Formula: see text] has a cut of cofinality [Formula: see text] We deal mainly with the case [Formula: see text]


Sign in / Sign up

Export Citation Format

Share Document