Full discretization of some reaction diffusion equation with blow up

2006 ◽  
Vol 4 (2) ◽  
pp. 260-269
Author(s):  
Geneviève Barro ◽  
Benjamin Mampassi ◽  
Longin Some ◽  
Jean Ntaganda ◽  
Ousséni So

AbstractThis paper aims at the development of numerical schemes for nonlinear reaction diffusion problems with a convection that blows up in a finite time. A full discretization of this problem that preserves the blow — up property is presented as well as a numerical simulation. Efficiency of the method is derived via a numerical comparison with a classical scheme based on the Runge Kutta scheme.

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Razvan Gabriel Iagar ◽  
Ana Isabel Muñoz ◽  
Ariel Sánchez

<p style='text-indent:20px;'>We classify the finite time blow-up profiles for the following reaction-diffusion equation with unbounded weight:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \partial_tu = \Delta u^m+|x|^{\sigma}u^p, $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>posed in any space dimension <inline-formula><tex-math id="M1">\begin{document}$ x\in \mathbb{R}^N $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ t\geq0 $\end{document}</tex-math></inline-formula> and with exponents <inline-formula><tex-math id="M3">\begin{document}$ m&gt;1 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M4">\begin{document}$ p\in(0, 1) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ \sigma&gt;2(1-p)/(m-1) $\end{document}</tex-math></inline-formula>. We prove that blow-up profiles in backward self-similar form exist for the indicated range of parameters, showing thus that the unbounded weight has a strong influence on the dynamics of the equation, merging with the nonlinear reaction in order to produce finite time blow-up. We also prove that all the blow-up profiles are <i>compactly supported</i> and might present two different types of interface behavior and three different possible <i>good behaviors</i> near the origin, with direct influence on the blow-up behavior of the solutions. We classify all these profiles with respect to these different local behaviors depending on the magnitude of <inline-formula><tex-math id="M6">\begin{document}$ \sigma $\end{document}</tex-math></inline-formula>. This paper generalizes in dimension <inline-formula><tex-math id="M7">\begin{document}$ N&gt;1 $\end{document}</tex-math></inline-formula> previous results by the authors in dimension <inline-formula><tex-math id="M8">\begin{document}$ N = 1 $\end{document}</tex-math></inline-formula> and also includes some finer classification of the profiles for <inline-formula><tex-math id="M9">\begin{document}$ \sigma $\end{document}</tex-math></inline-formula> large that is new even in dimension <inline-formula><tex-math id="M10">\begin{document}$ N = 1 $\end{document}</tex-math></inline-formula>.</p>


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Hasibun Naher ◽  
Farah Aini Abdullah

We construct new exact traveling wave solutions involving free parameters of the nonlinear reaction diffusion equation by using the improved (G′/G)-expansion method. The second-order linear ordinary differential equation with constant coefficients is used in this method. The obtained solutions are presented by the hyperbolic and the trigonometric functions. The solutions become in special functional form when the parameters take particular values. It is important to reveal that our solutions are in good agreement with the existing results.


Sign in / Sign up

Export Citation Format

Share Document