scholarly journals Operator functional state estimation based on EEG-data-driven fuzzy model

2016 ◽  
Vol 10 (5) ◽  
pp. 375-383 ◽  
Author(s):  
Jianhua Zhang ◽  
Zhong Yin ◽  
Shaozeng Yang ◽  
Rubin Wang
2014 ◽  
Vol 556-562 ◽  
pp. 4065-4068
Author(s):  
Shao Zeng Yang ◽  
Jian Hua Zhang

Operator functional state (OFS) is defined as the time-variable ability that an operator completes his/her assigned tasks. To evaluate the OFS in safety-critical human-machine systems, it is modeled by using the Wang-Mendel-based fuzzy system paradigm in this paper. The fuzzy model is constructed to correlate three EEG features (as model inputs) to the human-machine system performance (as model output). To derive a fuzzy model for real-time OFS assessment, the Gaussian membership function membership crossover point membership gradeδis found to be an essential parameter that controls the robustness of data-driven fuzzy models. The fuzzy models with differentδare applied to the OFS fuzzy modeling. The results have demonstrated that an appropriate value ofδcan be selected to derive robust fuzzy models. Compare with the results obtained by fuzzy models based on symmetric Gaussian membership functions, the new approach based on asymmetric Gaussian membership function leads to considerably improved robustness performance.


2013 ◽  
Author(s):  
James C. Christensen ◽  
Justin R. Estepp ◽  
Glenn F. Wilson ◽  
Christopher A. Russell ◽  
Krystal M. Thomas

2020 ◽  
Vol 16 (1) ◽  
pp. 639-647 ◽  
Author(s):  
Olugbenga Moses Anubi ◽  
Charalambos Konstantinou

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2085
Author(s):  
Xue-Bo Jin ◽  
Ruben Jonhson Robert RobertJeremiah ◽  
Ting-Li Su ◽  
Yu-Ting Bai ◽  
Jian-Lei Kong

State estimation is widely used in various automated systems, including IoT systems, unmanned systems, robots, etc. In traditional state estimation, measurement data are instantaneous and processed in real time. With modern systems’ development, sensors can obtain more and more signals and store them. Therefore, how to use these measurement big data to improve the performance of state estimation has become a hot research issue in this field. This paper reviews the development of state estimation and future development trends. First, we review the model-based state estimation methods, including the Kalman filter, such as the extended Kalman filter (EKF), unscented Kalman filter (UKF), cubature Kalman filter (CKF), etc. Particle filters and Gaussian mixture filters that can handle mixed Gaussian noise are discussed, too. These methods have high requirements for models, while it is not easy to obtain accurate system models in practice. The emergence of robust filters, the interacting multiple model (IMM), and adaptive filters are also mentioned here. Secondly, the current research status of data-driven state estimation methods is introduced based on network learning. Finally, the main research results for hybrid filters obtained in recent years are summarized and discussed, which combine model-based methods and data-driven methods. This paper is based on state estimation research results and provides a more detailed overview of model-driven, data-driven, and hybrid-driven approaches. The main algorithm of each method is provided so that beginners can have a clearer understanding. Additionally, it discusses the future development trends for researchers in state estimation.


Author(s):  
Kaveh Mehrzad ◽  
Shervan Ataei

This paper provides a data-driven model of the vibration response of a railway crossing during vehicle passages. Many of the features of trains passing through instrumented crossing are extracted from measured data. Based on the feature selection process, speed, dynamic axle load and the number of wagons are found proper inputs in the prediction model. Train-crossing interaction response at a crossing due to passing trains is modeled from a data-driven Neuro-Fuzzy soft computing approach. Locally Linear Model Tree (LOLIMOT) is applied to predict the crossing nose acceleration. The model comparison against measurements shows that the ability to predict the extrapolation cases at off-range speeds has satisfactory compatibility. The monitored passing trains are ranked based on the LOLIMOT input space dimension cuts and extrapolation of the model up to higher train speeds. The influence of train factors (i.e. speed, dynamic axle load, number of wagons) on crossing response is demonstrated. Also, based on the analysis results, it is concluded that with a steady increase in train speeds, some trains show a greater amplification in vibration response than others. The results can be applied in data processing in the crossing vibration monitoring and detection of trains with crossing impact sensitive to speed increasing that can lead to proper operation policies to reduce damages and maintenance costs.


2021 ◽  
Vol 9 (4) ◽  
pp. 897-909
Author(s):  
Yanbo Chen ◽  
Hao Chen ◽  
Yang Jiao ◽  
Jin Ma ◽  
Yuzhang Lin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document