Fractional operators of variable order from variable exponent Morrey spaces to variable exponent Campanato spaces on quasi-metric measure spaces with growth condition

Author(s):  
Humberto Rafeiro ◽  
Stefan Samko
2020 ◽  
Vol 27 (1) ◽  
pp. 157-164
Author(s):  
Stefan Samko

AbstractWe show that the fractional operator {I^{\alpha(\,\cdot\,)}}, of variable order on a bounded open set in Ω, in a quasimetric measure space {(X,d,\mu)} in the case {\alpha(x)p(x)\equiv n} (where n comes from the growth condition on the measure μ), is bounded from the variable exponent Lebesgue space {L^{p(\,\cdot\,)}(\Omega)} into {\mathrm{BMO}(\Omega)} under certain assumptions on {p(x)} and {\alpha(x)}.


2021 ◽  
Vol 18 (6) ◽  
Author(s):  
Rovshan A. Bandaliyev ◽  
Przemysław Górka ◽  
Vagif S. Guliyev ◽  
Yoshihiro Sawano

AbstractWe study a characterization of the precompactness of sets in variable exponent Morrey spaces on bounded metric measure spaces. Totally bounded sets are characterized from several points of view for the case of variable exponent Morrey spaces over metric measure spaces. This characterization is new in the case of constant exponents.


2006 ◽  
Vol 36 (0) ◽  
pp. 79-94 ◽  
Author(s):  
Petteri Harjulehto ◽  
Peter Hästö ◽  
Mikko Pere

2018 ◽  
Vol 47 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Yoshihiro SAWANO ◽  
Tetsu SHIMOMURA ◽  
Hitoshi TANAKA}

2021 ◽  
Vol 24 (6) ◽  
pp. 1643-1669
Author(s):  
Natasha Samko

Abstract We study commutators of weighted fractional Hardy-type operators within the frameworks of local generalized Morrey spaces over quasi-metric measure spaces for a certain class of “radial” weights. Quasi-metric measure spaces may include, in particular, sets of fractional dimentsions. We prove theorems on the boundedness of commutators with CMO coefficients of these operators. Given a domain Morrey space 𝓛 p,φ (X) for the fractional Hardy operators or their commutators, we pay a special attention to the study of the range of the exponent q of the target space 𝓛 q,ψ (X). In particular, in the case of classical Morrey spaces, we provide the upper bound of this range which is greater than the known Adams exponent.


2019 ◽  
Vol 63 (2) ◽  
pp. 287-303
Author(s):  
Takao Ohno ◽  
Tetsu Shimomura

AbstractOur aim in this paper is to establish a generalization of Sobolev’s inequality for Riesz potentials $I_{\unicode[STIX]{x1D6FC}(\,\cdot \,),\unicode[STIX]{x1D70F}}f$ of order $\unicode[STIX]{x1D6FC}(\,\cdot \,)$ with $f\in L^{\unicode[STIX]{x1D6F7},\unicode[STIX]{x1D705},\unicode[STIX]{x1D703}}(X)$ over bounded non-doubling metric measure spaces. As a corollary we obtain Sobolev’s inequality for double phase functionals with variable exponents.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Cao Yonghui ◽  
Zhou Jiang

The authors give a definition of Morrey spaces for nonhomogeneous metric measure spaces and investigate the boundedness of some classical operators including maximal operator, fractional integral operator, and Marcinkiewicz integral operators.


2014 ◽  
Vol 57 (3) ◽  
pp. 598-608 ◽  
Author(s):  
Yufeng Lu ◽  
Dachun Yang ◽  
Wen Yuan

AbstractIn this article, via the classical complex interpolation method and some interpolation methods traced to Gagliardo, the authors obtain an interpolation theorem for Morrey spaces on quasimetric measure spaces, which generalizes some known results on ℝn.


2016 ◽  
Vol 103 (2) ◽  
pp. 268-278 ◽  
Author(s):  
GUANGHUI LU ◽  
SHUANGPING TAO

Let $({\mathcal{X}},d,\unicode[STIX]{x1D707})$ be a nonhomogeneous metric measure space satisfying the so-called upper doubling and the geometric doubling conditions. In this paper, the authors give the natural definition of the generalized Morrey spaces on $({\mathcal{X}},d,\unicode[STIX]{x1D707})$, and then investigate some properties of the maximal operator, the fractional integral operator and its commutator, and the Marcinkiewicz integral operator.


Sign in / Sign up

Export Citation Format

Share Document