Oxidation reactivities of organic sulfur compounds in fuel oil using immobilized heteropoly acid as catalyst

2007 ◽  
Vol 22 (2) ◽  
pp. 320-324 ◽  
Author(s):  
Xuemin Yan ◽  
Jiaheng Lei ◽  
Dan Liu ◽  
Liping Guo ◽  
Yangchun Wu
Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5286
Author(s):  
Valery Meshalkin ◽  
Elena Shinkar ◽  
Nadezhda Berberova ◽  
Nadezhda Pivovarova ◽  
Foat Ismagilov ◽  
...  

A logical-informational model of energy resource-efficient chemical technology for the utilization of hydrogen sulfide and low molecular alkanethiols, which are toxic and difficult to remove sulfur components of residual fuel (fuel oil), is proposed. Based on the IDEF1 methodology and existing knowledge about the technological processes of the demercaptanization of various hydrocarbon raw materials (oils, gas condensates), a scheme for the production of organic sulfur compounds from sulfur waste extracted from fuel oil has been modeled. For a sufficiently complete removal of hydrogen sulfide and low molecular weight alkanethiols, energy- and resource-saving stages of the technological process have been developed, which are implemented by ultrasonic and/or magnetic treatment of fuel oil. It is proposed to use the combined action of two alternative methods of processing fuel oil to increase the efficiency of cleaning fuel oil from sulfur components. For the first time, an approach has been developed to utilize unwanted sulfuric impurities contained in fuel oil by involving electric and microwave synthesis in green technological processes, to obtain practically useful organic sulfur compounds with biological activity. It is shown that the use of one-electron oxidant thiols and hydrogen sulfide in organic media leads to the synthesis of organic disulfides and elemental sulfur. Indirect (with the use of mediators) electrosynthesis contributes to the cyclic conduct of the technological process, an increase in efficiency and a decrease in energy consumption compared to the direct (on electrodes) initiation of sulfur components.


2020 ◽  
Vol 20 (4) ◽  
pp. 1264-1270
Author(s):  
Xiang Tu ◽  
Shaohua Chen ◽  
Siyu Wang ◽  
Haiqing Liao ◽  
Xuejiao Deng

Abstract This study investigated the pollution status of volatile organic sulfur compounds (VOSCs) and the factors influencing their spatial distribution in the Xi River in Shenyang, China. A method for simultaneous determination of 14 VOSCs that cause odor in water samples was developed by using purge and trap coupled with gas chromatography and a flame photometric detector. The results indicated that each target compound could be identified from 15 sampling sites, and the total concentration of 14 VOSCs ranged from 2.575 to 52.981 μg L−1. Dimethyl sulfide (DMS) was the most important contaminant with an average concentration of 4.029 μg L−1, a detection rate of 93.33% and a variation coefficient of 0.72. The VOSCs were primarily distributed in suburban and rural sections, and the suburban section was the worst in regard to pollution by VOSCs. Dimethyl trisulfide was primarily distributed in urban and suburban sections of the Xi River due to industrial emissions. Ethanethiol, DMS, and ethyl methyl sulfide, which are typical by-products of microbial anaerobic decomposition from domestic wastewater, were found in abundance in the suburban section. Diethyl sulfide, diethyl disulfide, methyl propyl disulfide, and 1-propyl disulfide representing agricultural nonpoint source pollution were mostly distributed in the rural section.


1966 ◽  
Vol 44 (17) ◽  
pp. 2105-2109 ◽  
Author(s):  
R. T. Coutts ◽  
K. W. Hindmarsh ◽  
N. J. Pound

not available


Sign in / Sign up

Export Citation Format

Share Document