organic sulfur
Recently Published Documents


TOTAL DOCUMENTS

1210
(FIVE YEARS 106)

H-INDEX

59
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Haoyu Jiang ◽  
Yingyao He ◽  
Yiqun Wang ◽  
Sheng Li ◽  
Bin Jiang ◽  
...  

Abstract. The presence of organic sulfur compounds (OSs) at the water surface, acting as organic surfactants, may influence the air-water interaction and contribute to new particle formation in the atmosphere. However, the impact of ubiquitous anthropogenic pollutant emissions, such as SO2 and polycyclic aromatic hydrocarbons (PAHs) on the formation of OSs at the air-water interface still remains unknown. Here, we observe large amounts of OSs formation in presence of SO2, upon irradiation of aqueous solutions containing typical PAHs such as pyrene (PYR), fluoranthene (FLA), and phenanthrene (PHE), as well as dimethylsulfoxide (DMSO). We observe rapid formation of several gaseous OSs from light-induced heterogeneous reactions of SO2 with either DMSO or a mixture of PAHs/DMSO, and some of these OSs (e.g. methanesulfonic acid) are well established secondary organic aerosol (SOA) precursors. A myriad of OSs and unsaturated compounds are produced and detected in the aqueous phase. The tentative reaction pathways are supported by theoretical calculations of the reaction Gibbs energies. Our findings provide new insights into potential sources and formation pathways of OSs occurring at the water (sea, lake, river) surface, that should be considered in future model studies to better represent the air-water interaction and SOA formation processes.


2022 ◽  
Author(s):  
Hongxing Jiang ◽  
Jun Li ◽  
Jiao Tang ◽  
Min Cui ◽  
Shizhen Zhao ◽  
...  

Abstract. Organosulfur compounds (OrgSs), especially organosulfates, have been widely reported at large quantities in particulate organic matter found in various atmospheric environments. Despite various kinds of organosulfates and their formation mechanisms being previously identified, a large fraction of OrgSs remain unexplained at the molecular level, impeding further knowledge on additional formation pathways and critical environmental parameters that help to explain their concentrations. In this work, the abundance and molecular composition of OrgSs in fine particulate samples collected in Guangzhou was reported. Our results revealed that organic sulfur can averagely contribute to 30 % of total particulate sulfur, and showed positively correlations with the SO2 (r = 0.37, p < 0.05) and oxidants (NOx+O3, r = 0.40, p < 0.01). Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) results presented that more than 80 % by number of the detected OrgSs in our samples have the elemental composition of O/(4S+3N)  ≥ 1, indicating that they were largely in the form of oxidized organosulfates and/or nitrooxy organosulfates. Many OrgSs, which are tentatively attributed to previously identified biogenic and anthropogenic origins, were also present in aerosols derived from freshly-emitted combustion sources. Results show that the formation of OrgSs through an epoxide intermediate pathway could be as much as 46 %, and the oxidants levels could explain 20 % variation of organic sulfur mass. The analysis from our large FT-ICR MS dataset suggests that relative humidity, oxidation of biogenic volatile organic compounds via ozonolysis, and NOx-related nitrooxy organosulfate formations were the major reasons for the molecular variation of OrgSs, possibly highlighting the importance of heterogeneous reactions involving either the uptake of SO2 or the heterogeneous oxidations of particulate organosulfates into additional unrecognized OrgSs.


2022 ◽  
Vol 34 (1) ◽  
pp. 142-150
Author(s):  
Shen Lili ◽  
◽  
Sun Tingting ◽  
Guo Xiaoyu ◽  
Huang Tao

2021 ◽  
Author(s):  
Chaoshun Jiang ◽  
Jin Liu ◽  
Shen Hao ◽  
Zheng Pang ◽  
Zhi Wang ◽  
...  

Abstract To explore the feasibility of organic acid removal of organic sulfur from high sulfur coal, three organic acids, oxalic acid, citric acid and ascorbic acid, were selected as desulfurization reagents. Combined with microwave irradiation technology, desulfurization experiments of high-sulfur coal treated with nitric acid were conducted. The orthogonal experimental results showed that microwave synergistic citric acid desulfurization had a better desulfurization effect. The removal rate of organic sulfur was 55.47% when the operation conditions of the reaction were 1 mol/L, 90 ℃ and 1000 W for 7 min. The desulfurization efficiency of oxalic acid and ascorbic acid was not good, and the removal efficiencies of organic sulfur were 32.35% and 21.37%, respectively. Fourier transform infrared spectroscopy showed that sulfones and sulfoxides were partially reduced and that the removal effect of thiophene was poor. X-ray photoelectron spectroscopy showed that the mercapto group in the mercaptan combined with hydrogen ions and escaped in the form of H2S. The content of aromatic thioether and aromatic thiol in the coal treated with microwave irradiation was only 0.1%. Research indicates that microwave-assisted organic acid removal of organic sulfur is feasible, and researchers can explore more efficient organic acids as desulfurization reagents based on this study.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2676
Author(s):  
Yujun Xu ◽  
Dequan Zhang ◽  
Ruixia Chen ◽  
Xiaoyue Yang ◽  
Huan Liu ◽  
...  

To prevent the pollution generated during charcoal roasting of tamarix lamb, environmental-friendly electric is gradually applied in meat processing. The profile and formation of flavor in roasted tamarix lamb were evaluated using HS-SPME/GC-MS combined with E-nose/-tongue. Results indicated that charcoal-roasted tamarix lamb exhibited the higher taste of umami and sourness in E-tongue and had higher contents of alcohols, aldehydes, ketones, alkanes, and aromatics in E-nose, while the electric ones exhibited the higher taste of sweetness and bitterness and had higher contents of nitrogen oxides, terpenes, aromatics, and organic sulfur. Compared with charcoal, application of the electric significantly decreased the numbers of key volatile compounds with VIP > 1 (markers) and the contents of most markers.


2021 ◽  
Vol 910 (1) ◽  
pp. 012134
Author(s):  
Hussein H. Omrani ◽  
Ridha M. Al-Ubaidy

Abstract The study was conducted in the fields of the Department of Horticulture and Landscaping/College of Agriculture/University of Al-Qadisiyah/Al-Nouriah district - for the 2019-2020 agricultural season to study the effect of spraying with organic sulfur and hydrogen peroxide on the growth and yield of onions, Allium cepa L, where the study included two factors: the first factor was spraying organic sulfur at concentration (0, 2)., 4 ml. L-1) and symbol S1, S2, S3 and the second factor spraying with hydrogen peroxide at a concentration (0, 2, 4 ml. L-1) and symbolized by B1, B2, B3 and the interaction between them. A factorial experiment was conducted according to the randomized complete block design (RCBD) with three replications and the comparison between the treatments was done using the least significant difference test L.S.D at the probability level of 0.05. The results showed that spraying with organic sulfur or spraying with hydrogen peroxide in a single form led to a significant increase in all studied traits, as well as the interaction between the two factors, where the treatment S3B3 recorded the highest significant increase in plant height, leaf length, number of leaves, leaf neck diameter and yield weight per hectare of 82.00 cm plant. -1, 63.0 cm, 11.00 leaf. Plant-1, 55.67 mm. Onion-1, 22.67 mm. Onion-1, 4.146 tons. hectare-1, respectively.


2021 ◽  
Vol 20 (1) ◽  
pp. 1-10
Author(s):  
Megga Ratnasari Pikoli ◽  
◽  
Pingkan Aditiawati ◽  
Dea Indriani Astuti ◽  
Akhmaloka Akhmaloka ◽  
...  

Efforts to reduce organic sulfur in coal are taken through biodesulfurization by using desulfurization bacteria to release covalently-bound sulfur from the coal matrix. Coal is a complex hydrocarbon material that requires collaboration from more than one type of bacteria in a consortium for desulfurization. The current study shows how the individual members of a bacterial consortium obtained directly from coal samples grew on the coal. Mineral medium containing sub-bituminous coal with a concentration of 10%, 15%, and 20% served as a carbon source and the only sulfur to support the consortium's growth. The examination included growth patterns, concentrations of dibenzothiophene as an organic sulfur representative, pH, and sulfate concentration as the sulfur product released into the medium. The growth of individual members of the consortium was observed for 336 h. The consortium grew in all three coal concentrations with slightly different cell growth patterns and the release of dibenzothiophene. Members of the consortium grew alternately and overlapped, which showed possible linkages or dependence on products and existence from the growth of other members. The existence of the primary strain Moraxella osloensis COK1 indicated that they played a role in the activities and growth of other members. The alternating growth is discussed to produce a hypothetical illustration of how several other members play in using sulfur in a well-known desulfurization pathway. In conclusion, this study provides a deeper insight into the value of consortium members individually but growing together while swarming coal as a complex resource to become low-sulfur coal.


Sign in / Sign up

Export Citation Format

Share Document