The influence of ceramic surface treatments on the microtensile bond strength of resin cements to Y-TZP ceramic

2010 ◽  
Vol 25 (6) ◽  
pp. 996-1000
Author(s):  
Park Mi-Hee ◽  
Ju-Mi Park ◽  
Seung-Geun Ahn ◽  
Kwang-Yeob Song ◽  
Tae-Sung Bae ◽  
...  
2006 ◽  
Vol 96 (6) ◽  
pp. 412-417 ◽  
Author(s):  
Jatyr Pisani-Proenca ◽  
Maria Carolina G. Erhardt ◽  
Luiz Felipe Valandro ◽  
Guillermo Gutierrez-Aceves ◽  
Maria Victoria Bolanos-Carmona ◽  
...  

2019 ◽  
Vol 18 ◽  
pp. e191581
Author(s):  
Fawaz Alqahtani ◽  
Mohammed Alkhurays

Aim: The study aimed to evaluate and compare the effect of different surface treatment and thermocycling on the shear bond strength (SBS) of different dual-/light-cure cements bonding porcelain laminate veneers (PLV). Methods: One hundred and twenty A2 shade lithium disilicate discs were divided into three groups based on the resin cement used and on the pretreatment received and then divided into two subgroups: thermocycling and control. The surface treatment were either micro-etched with aluminium trioxide and 10% hydrofluoric acid or etched with 10% hydrofluoric acid only before cementation. Three dual-cure (Variolink Esthetic (I), RelyX Ultimate (II), and RelyX Unicem (III)) and three light-cure (Variolink Veneer (IV), Variolink Esthetic (V), RelyX Veneer (VI)) resin cements were used for cementation. The SBS of the samples was evaluated and analysed using three -way ANOVA with statistical significant set at α=0.05. Results: For all resin cements tested with different surface treatments, there was a statistically significant difference within resin cements per surface treatment (p<0.05). The shear bond strength in the micro-etch group was significant higher than the acid-etch group (p<0.05) There was statistically significant interaction observed between the surface treatment and thermocycling (p<0.05) as well as the cement and thermocycling(p<0.05). It was observed that the reduction in shear bond strength after thermocycling was more pronounced in the acid etch subgroup as compared to the microetch subgroup. However, the interaction between the three factors: surface treatments, thermocycling and resin cements did not demonstrate statistically significant differences between and within groups (p=0.087). Conclusions: Within the limitations of the present study, it acan be concluded that Dual cure resin cements showed a higher Shear bond strength as compared to light cure resin cements. Thermal cycling significantly decreased the shear bond strength for both ceramic surface treatments. After thermocycling, the specimens with 10% HF surface treatment showed lower shear bond strength values when compared to those treated by sandblasting with Al2O3 particles.


Materials ◽  
2018 ◽  
Vol 11 (6) ◽  
pp. 916 ◽  
Author(s):  
Chan-Hong Song ◽  
Jae-Won Choi ◽  
Young-Chan Jeon ◽  
Chang-Mo Jeong ◽  
So-Hyoun Lee ◽  
...  

2013 ◽  
Vol 38 (2) ◽  
pp. 208-217 ◽  
Author(s):  
GB Guarda ◽  
AB Correr ◽  
LS Gonçalves ◽  
AR Costa ◽  
GA Borges ◽  
...  

SUMMARY Objectives The aim of this present study was to investigate the effect of two surface treatments, fatigue and thermocycling, on the microtensile bond strength of a newly introduced lithium disilicate glass ceramic (IPS e.max Press, Ivoclar Vivadent) and a dual-cured resin cement. Methods A total of 18 ceramic blocks (10 mm long × 7 mm wide × 3.0 mm thick) were fabricated and divided into six groups (n=3): groups 1, 2, and 3—air particle abraded for five seconds with 50-μm aluminum oxide particles; groups 4, 5, and 6—acid etched with 10% hydrofluoric acid for 20 seconds. A silane coupling agent was applied onto all specimens and allowed to dry for five seconds, and the ceramic blocks were bonded to a block of composite Tetric N-Ceram (Ivoclar Vivadent) with RelyX ARC (3M ESPE) resin cement and placed under a 500-g static load for two minutes. The cement excess was removed with a disposable microbrush, and four periods of light activation for 40 seconds each were performed at right angles using an LED curing unit (UltraLume LED 5, Ultradent) with a final 40 second light exposure from the top surface. All of the specimens were stored in distilled water at 37°C for 24 hours. Groups 2 and 5 were submitted to 3,000 thermal cycles between 5°C and 55°C, and groups 3 and 6 were submitted to a fatigue test of 100,000 cycles at 2 Hz. Specimens were sectioned perpendicular to the bonding area to obtain beams with a cross-sectional area of 1 mm2 (30 beams per group) and submitted to a microtensile bond strength test in a testing machine (EZ Test) at a crosshead speed of 0.5 mm/min. Data were submitted to analysis of variance and Tukey post hoc test (p≤0.05). Results The microtensile bond strength values (MPa) were 26.9 ± 6.9, 22.2 ± 7.8, and 21.2 ± 9.1 for groups 1–3 and 35.0 ± 9.6, 24.3 ± 8.9, and 23.9 ± 6.3 for groups 4–6. For the control group, fatigue testing and thermocycling produced a predominance of adhesive failures. Fatigue and thermocycling significantly decreased the microtensile bond strength for both ceramic surface treatments when compared with the control groups. Etching with 10% hydrofluoric acid significantly increased the microtensile bond strength for the control group.


2004 ◽  
Vol 13 (1) ◽  
pp. 28-35 ◽  
Author(s):  
Alfredo Meyer Filho ◽  
Luiz Clovis Cardoso Vieira ◽  
Élito Araújo ◽  
Sylvio Monteiro Júnior

2015 ◽  
Vol 7 (4) ◽  
pp. 317 ◽  
Author(s):  
Seung-Hyun Youm ◽  
Kyoung-Hwa Jung ◽  
Sung-Ae Son ◽  
Yong-Hoon Kwon ◽  
Jeong-Kil Park

2004 ◽  
Vol 12 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Carlos José Soares ◽  
Marcelo Giannini ◽  
Marcelo Tavares de Oliveira ◽  
Luis Alexandre Maffei Sartini Paulillo ◽  
Luis Roberto Marcondes Martins

The purpose of this study was to evaluate the influence of different surface treatments on composite resin on the microtensile bond strength to a luting resin cement. Two laboratory composites for indirect restorations, Solidex and Targis, and a conventional composite, Filtek Z250, were tested. Forty-eight composite resin blocks (5.0 x 5.0 x 5.0mm) were incrementally manufactured, which were randomly divided into six groups, according to the surface treatments: 1- control, 600-grit SiC paper (C); 2- silane priming (SI); 3- sandblasting with 50 mm Al2O3 for 10s (SA); 4- etching with 10% hydrofluoric acid for 60 s (HF); 5- HF + SI; 6 - SA + SI. Composite blocks submitted to similar surface treatments were bonded together with the resin adhesive Single Bond and Rely X luting composite. A 500-g load was applied for 5 minutes and the samples were light-cured for 40s. The bonded blocks were serially sectioned into 3 slabs with 0.9mm of thickness perpendicularly to the bonded interface (n = 12). Slabs were trimmed to a dumbbell shape and tested in tension at 0.5mm/min. For all composites tested, the application of a silane primer after sandblasting provided the highest bond strength means.


Sign in / Sign up

Export Citation Format

Share Document