scholarly journals Effect of surface treatments of laboratory-fabricated composites on the microtensile bond strength to a luting resin cement

2004 ◽  
Vol 12 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Carlos José Soares ◽  
Marcelo Giannini ◽  
Marcelo Tavares de Oliveira ◽  
Luis Alexandre Maffei Sartini Paulillo ◽  
Luis Roberto Marcondes Martins

The purpose of this study was to evaluate the influence of different surface treatments on composite resin on the microtensile bond strength to a luting resin cement. Two laboratory composites for indirect restorations, Solidex and Targis, and a conventional composite, Filtek Z250, were tested. Forty-eight composite resin blocks (5.0 x 5.0 x 5.0mm) were incrementally manufactured, which were randomly divided into six groups, according to the surface treatments: 1- control, 600-grit SiC paper (C); 2- silane priming (SI); 3- sandblasting with 50 mm Al2O3 for 10s (SA); 4- etching with 10% hydrofluoric acid for 60 s (HF); 5- HF + SI; 6 - SA + SI. Composite blocks submitted to similar surface treatments were bonded together with the resin adhesive Single Bond and Rely X luting composite. A 500-g load was applied for 5 minutes and the samples were light-cured for 40s. The bonded blocks were serially sectioned into 3 slabs with 0.9mm of thickness perpendicularly to the bonded interface (n = 12). Slabs were trimmed to a dumbbell shape and tested in tension at 0.5mm/min. For all composites tested, the application of a silane primer after sandblasting provided the highest bond strength means.

2015 ◽  
Vol 26 (2) ◽  
pp. 152-155 ◽  
Author(s):  
Christian Alencar Neis ◽  
Nadine Luísa Guimarães Albuquerque ◽  
Ivo de Souza Albuquerque ◽  
Erica Alves Gomes ◽  
Celso Bernardo de Souza-Filho ◽  
...  

The aim of this study was to evaluate the efficacy of different surface conditioning methods on the microtensile bond strength of a restorative composite repair in three types of dental ceramics: lithium disilicate-reinforced, leucite-reinforced and feldspathic. Twelve blocks were sintered for each type of ceramic (n=3) and stored for 3 months in distilled water at 37 °C. The bonding surface of ceramics was abraded with 600-grit SiC paper. Surface treatments for each ceramic were: GC (control) - none; GDB - diamond bur #30 µm; GHF - hydrofluoric acid (10%); GT- tribochemical silica coating (45-μm size particles). Treatments were followed by cleaning with phosphoric acid 37% for 20 s + silane + adhesive. The composite resin was used as restorative material. After repair, samples were subjected to thermocycled ageing (10,000 cycles between 5 °C and 55 °C for 30 s). Thereafter, the samples were sectioned into 1.0 mm2 sticks and tested for microtensile bond strength with 0.5 mm/min crosshead speed. Data were compared by two-way ANOVA and Tukey's test (α=0.05). The superficial wear with diamond bur proved to be suitable for feldspathic porcelain and for leucite-reinforced glass ceramic while hydrofluoric acid-etching is indicated for repairs in lithium disilicate-reinforced ceramic; tribochemical silica coating is applicable to leucite-reinforced ceramic. Predominance of adhesive failures was observed (>85% in all groups). In conclusion, the success of surface treatments depends on the type of ceramic to be repaired.


2016 ◽  
Vol 41 (3) ◽  
pp. 284-292 ◽  
Author(s):  
TP Sato ◽  
LC Anami ◽  
RM Melo ◽  
LF Valandro ◽  
MA Bottino

SUMMARY This study evaluated the effects of surface treatments on the bond strength between the new zirconia-reinforced lithium silicate ceramic (ZLS) and resin cement. VITA Suprinity blocks were crystallized according to the manufacturer's instructions and randomly assigned to six groups (N=36; n=6), according to the surface treatment to be performed and aging conditions: HF20, 10% hydrofluoric acid for 20 seconds, baseline (control); HF20tc, 10% hydrofluoric acid for 20 seconds, aging; HF40, 10% hydrofluoric acid for 40 seconds, baseline; HF40tc, 10% hydrofluoric acid for 40 seconds, aging; CJ, CoJet sandblasting (25 seconds, 2.5 bar, 15-mm distance), baseline; and CJtc, CoJet sandblasting (25 seconds, 2.5 bar, 15-mm distance), aging. All specimens were silanized (Monobond S) and cemented with Panavia F to newly polymerized Z250 resin blocks. After specimens were immersed for 24 hours in distilled water at 37° C, 1-mm2 cross-section microbars were obtained by means of a cutting machine under constant cooling. Baseline groups were immediately tested, whereas “tc” groups were used to analyze the effect of aging on bond strength (10,000 thermal cycles, 5/55°C, 30-second bath). The microtensile bond strength test was performed with a universal testing machine (0.5 mm/min), and bond strength (MPa) was calculated when the load-to-failure (N) was divided by the adhesive area (mm2). We also evaluated the surface roughness (Sa, average roughness; Str, texture aspect ratio; Sdr, developed interfacial area ratio) and the contact angle resulting from the treatments. Data were statistically analyzed by one- or two-way analysis of variance and Tukey's test (all α=5%). The failure mode of each specimen was evaluated by stereomicroscopy, and representative specimens were analyzed by scanning electron microscopy. The microtensile bond strength was affected by the surface conditioning (p<0.0001), storage condition (p<0.0001), and the interaction between them (p=0.0012). The adhesion for HF etching was stable, whereas for CJ, aging significantly damaged the adhesion. Most failures were predominantly adhesive between ceramic and cement (52.6%). The roughness of the treated samples was higher compared with that of polished specimens for the three evaluated parameters (Sa, Str, and Sdr; all p<0.0001). Contact angle was also influenced by treatments (p<0.0001), with the CJ group showing values similar to those of control specimens. It can be concluded that the three surface treatment techniques present favorable immediate results, but silica coating was not effective in maintaining the bond strength over the long term.


2013 ◽  
Vol 38 (2) ◽  
pp. 208-217 ◽  
Author(s):  
GB Guarda ◽  
AB Correr ◽  
LS Gonçalves ◽  
AR Costa ◽  
GA Borges ◽  
...  

SUMMARY Objectives The aim of this present study was to investigate the effect of two surface treatments, fatigue and thermocycling, on the microtensile bond strength of a newly introduced lithium disilicate glass ceramic (IPS e.max Press, Ivoclar Vivadent) and a dual-cured resin cement. Methods A total of 18 ceramic blocks (10 mm long × 7 mm wide × 3.0 mm thick) were fabricated and divided into six groups (n=3): groups 1, 2, and 3—air particle abraded for five seconds with 50-μm aluminum oxide particles; groups 4, 5, and 6—acid etched with 10% hydrofluoric acid for 20 seconds. A silane coupling agent was applied onto all specimens and allowed to dry for five seconds, and the ceramic blocks were bonded to a block of composite Tetric N-Ceram (Ivoclar Vivadent) with RelyX ARC (3M ESPE) resin cement and placed under a 500-g static load for two minutes. The cement excess was removed with a disposable microbrush, and four periods of light activation for 40 seconds each were performed at right angles using an LED curing unit (UltraLume LED 5, Ultradent) with a final 40 second light exposure from the top surface. All of the specimens were stored in distilled water at 37°C for 24 hours. Groups 2 and 5 were submitted to 3,000 thermal cycles between 5°C and 55°C, and groups 3 and 6 were submitted to a fatigue test of 100,000 cycles at 2 Hz. Specimens were sectioned perpendicular to the bonding area to obtain beams with a cross-sectional area of 1 mm2 (30 beams per group) and submitted to a microtensile bond strength test in a testing machine (EZ Test) at a crosshead speed of 0.5 mm/min. Data were submitted to analysis of variance and Tukey post hoc test (p≤0.05). Results The microtensile bond strength values (MPa) were 26.9 ± 6.9, 22.2 ± 7.8, and 21.2 ± 9.1 for groups 1–3 and 35.0 ± 9.6, 24.3 ± 8.9, and 23.9 ± 6.3 for groups 4–6. For the control group, fatigue testing and thermocycling produced a predominance of adhesive failures. Fatigue and thermocycling significantly decreased the microtensile bond strength for both ceramic surface treatments when compared with the control groups. Etching with 10% hydrofluoric acid significantly increased the microtensile bond strength for the control group.


2016 ◽  
Vol 41 (2) ◽  
pp. 171-178 ◽  
Author(s):  
F Campos ◽  
CS Almeida ◽  
MP Rippe ◽  
RM de Melo ◽  
LF Valandro ◽  
...  

SUMMARY The aim of this study was to verify the effects of different surface treatments on the microtensile bond strength between resin cement and a hybrid ceramic. Thirty-two hybrid ceramic slices (8 × 10 × 3 mm) were produced and allocated among four groups according to the surface treatment: Cont = no treatment, HA = 10% hydrofluoric acid applied for 60 seconds, PA = 37% phosphoric acid applied for 60 seconds and CJ = air abrasion with silica particle coated alumina (Cojet Sand, 3M ESPE, 30 μm/2.8 bar). As a control group, eight blocks of feldspathic ceramic (8 × 10 × 3 mm) were etched by hydrofluoric acid for 60 seconds (VMII). After the surface treatments, the ceramic slices were silanized (except the Cont group) and adhesively cemented to composite resin blocks (8 × 10 × 3 mm ) with a load of 750 g (polymerized for 40 seconds each side). The cemented blocks were cut into beams (bonded surface area of ∼1 mm2). Half of the beams were aged (thermocycling of 5°C-55°C/6000 cycles + water storage at 37°C/60 days), and the other half were tested immediately after being cut. Data were analyzed by Kruskal-Wallis and Dunn tests (non-aged groups) and by one-way analysis of variance and Tukey test (aged groups; α=0.05%). The mode of failure was classified by stereomicroscopy. The surface treatment significantly affected the bond strength in each set of groups: non-aged (p=0.001) and aged (p=0.001). Before being aged, samples in the CJ, HA, and PA groups achieved the highest bond strength values. However, after being aged, only those in the HA group remained with the highest bond strength values. Adhesive failure was found most often. In conclusion, hydrofluoric acid etching should be used for surface conditioning of the studied hybrid ceramic.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Zohreh Moradi ◽  
Farnoosh Akbari ◽  
Sara Valizadeh

Aim. This study aimed to assess shear bond strength (SBS) of resin cement to zirconia ceramic with different surface treatments by using Single Bond Universal. Methods. In this in vitro study, 50 zirconia discs (2 × 6 mm) were divided into 5 groups of (I) sandblasting with silica-coated alumina (CoJet)  + silane + Single Bond 2, (II) sandblasting with CoJet + Single Bond Universal, (III) sandblasting with alumina + Single Bond Universal, (IV) sandblasting with alumina + Z-Prime Plus, and (V) Single Bond Universal with no surface treatment. Resin cement was applied in plastic tubes (3 × 5 mm2), and after 10,000 thermal cycles, the SBS was measured by a universal testing machine. The mode of failure was determined under a stereomicroscope at × 40 magnification. Data were analyzed using one-way ANOVA. Results. The maximum (6.56 ± 4.29 MPa) and minimum (1.94 ± 1.96 MPa) SBS values were noted in groups III and I, respectively. Group III had the highest frequency of mixed failure (60%). Group V had the maximum frequency of adhesive failure (100%). Conclusion. Single Bond Universal + sandblasting with alumina or silica-coated alumina particles is an acceptable method to provide a strong SBS between resin cement and zirconia.


2016 ◽  
Vol 17 (11) ◽  
pp. 920-925 ◽  
Author(s):  
Bandar MA Al-Makramani ◽  
Fuad A Al-Sanabani ◽  
Abdul AA Razak ◽  
Mohamed I Abu-Hassan ◽  
Ibrahim Z AL-Shami ◽  
...  

ABSTRACT Aim The aim of this study was to evaluate the effect of surface treatments on shear bond strength (SBS) of Turkom-Cera (Turkom-Ceramic (M) Sdn. Bhd., Puchong, Malaysia) all-ceramic material cemented with resin cement Panavia-F (Kuraray Medical Inc., Okayama, Japan). Materials and methods Forty Turkom-Cera ceramic disks (10 mm × 3 mm) were prepared and randomly divided into four groups. The disks were wet ground to 1000-grit and subjected to four surface treatments: (1) No treatment (Control), (2) sandblasting, (3) silane application, and (4) sandblasting + silane. The four groups of 10 specimens each were bonded with Panavia-F resin cement according to manufacturer's recommendations. The SBS was determined using the universal testing machine (Instron) at 0.5 mm/min crosshead speed. Failure modes were recorded and a qualitative micromorphologic examination of different surface treatments was performed. The data were analyzed using the one-way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) tests. Results The SBS of the control, sandblasting, silane, and sandblasting + silane groups were: 10.8 ± 1.5, 16.4 ± 3.4, 16.2 ± 2.5, and 19.1 ± 2.4 MPa respectively. According to the Tukey HSD test, only the mean SBS of the control group was significantly different from the other three groups. There was no significant difference between sandblasting, silane, and sandblasting + silane groups. Conclusion In this study, the three surface treatments used improved the bond strength of resin cement to Turkom-Cera disks. Clinical significance The surface treatments used in this study appeared to be suitable methods for the cementation of glass infiltrated all-ceramic restorations. How to cite this article Razak AAA, Abu-Hassan MI, AL-Makramani BMA, AL-Sanabani FA, AL-Shami IZ, Almansour HM. Effect of Surface Treatments on the Bond Strength to Turkom-Cera All-Ceramic Material. J Contemp Dent Pract 2016;17(11):920-925.


2013 ◽  
Vol 24 (4) ◽  
pp. 349-352 ◽  
Author(s):  
Regina Claudia Ramos Colares ◽  
Jiovanne Rabelo Neri ◽  
Andre Mattos Brito de Souza ◽  
Karina Matthes de Freitas Pontes ◽  
Juliano Sartori Mendonca ◽  
...  

The aim of this study was to evaluate the influence of ceramic surface treatments and silane drying temperature on the microtensile bond strength (µTBS) of a resin composite to a lithium disilicate ceramic. Twenty blocks (7x7x5 mm) of lithium disilicate-based hotpressed ceramic were fabricated and randomly divided into 4 groups: G1: acid etching with 9.5% hydrofluoric acid for 20 s and drying silane with room-temperature air; G2: acid etching with 9.5% hydrofluoric acid for 20 s and drying silane with 45 ± 5 °C warm air; G3: airborne-particle abrasion with 50 µm aluminum oxide particles and drying silane with 45 ± 5 °C warm air; G4: airborne-particle abrasion with 50 µm aluminum oxide particles and drying silane with air at room-temperature. After treatments, an adhesive system (Single Bond 2) was applied, light-cured and direct restorations were built up with a resin composite (Filtek Z250). Each specimen was stored in distilled water at 37 °C for 24 h and cut into ceramic-composite beams with 1 mm2 of cross-sectional area for µTBS testing. Statistical analysis was performed with one-way ANOVA and Student-Newman-Keuls test (α=0.05). µTBS means (S.D.) in MPa were: G1: 32.14 (7.98), G2: 35.00 (7.77) and G3: 18.36 (6.17). All specimens of G4 failed during the cutting. G1 and G2 presented significantly higher µTBS than G3 (p<0.05). There was no statistically significant difference between G1 and G2 (p>0.05). As far as the bond strength is concerned, surface pretreatment of lithium-disilicate ceramic with hydrofluoric acid and silane application can be used as an alternative to repair ceramic restorations with composite resin, while surface pretreatment with sandblasting should be avoided.


Sign in / Sign up

Export Citation Format

Share Document