CT-1-CP-induced ventricular electrical remodeling in mice

Author(s):  
Shu-fen Chen ◽  
Tao-zhi Wei ◽  
Li-ya Rao ◽  
Ming-guang Xu ◽  
Zhan-ling Dong
2013 ◽  
Vol 305 (3) ◽  
pp. H410-H419 ◽  
Author(s):  
Darwin Jeyaraj ◽  
Xiaoping Wan ◽  
Eckhard Ficker ◽  
Julian E. Stelzer ◽  
Isabelle Deschenes ◽  
...  

Emerging evidence suggests that ventricular electrical remodeling (VER) is triggered by regional myocardial strain via mechanoelectrical feedback mechanisms; however, the ionic mechanisms underlying strain-induced VER are poorly understood. To determine its ionic basis, VER induced by altered electrical activation in dogs undergoing left ventricular pacing ( n = 6) were compared with unpaced controls ( n = 4). Action potential (AP) durations (APDs), ionic currents, and Ca2+ transients were measured from canine epicardial myocytes isolated from early-activated (low strain) and late-activated (high strain) left ventricular regions. VER in the early-activated region was characterized by minimal APD prolongation, but marked attenuation of the AP phase 1 notch attributed to reduced transient outward K+ current. In contrast, VER in the late-activated region was characterized by significant APD prolongation. Despite marked APD prolongation, there was surprisingly minimal change in ion channel densities but a twofold increase in diastolic Ca2+. Computer simulations demonstrated that changes in sarcolemmal ion channel density could only account for attenuation of the AP notch observed in the early-activated region but failed to account for APD remodeling in the late-activated region. Furthermore, these simulations identified that cytosolic Ca2+ accounted for APD prolongation in the late-activated region by enhancing forward-mode Na+/Ca2+ exchanger activity, corroborated by increased Na+/Ca2+ exchanger protein expression. Finally, assessment of skinned fibers after VER identified altered myofilament Ca2+ sensitivity in late-activated regions to be associated with increased diastolic levels of Ca2+. In conclusion, we identified two distinct ionic mechanisms that underlie VER: 1) strain-independent changes in early-activated regions due to remodeling of sarcolemmal ion channels with no changes in Ca2+ handling and 2) a novel and unexpected mechanism for strain-induced VER in late-activated regions in the canine arising from remodeling of sarcomeric Ca2+ handling rather than sarcolemmal ion channels.


2021 ◽  
Author(s):  
Ming-min Zhou ◽  
Di-wen Li ◽  
Ke Xie ◽  
Liao Xu ◽  
Bin Kong ◽  
...  

Short-chain fatty acids (SCFAs) propionate (C3), a microorganism metabolite produced by gut microbial fermentation, have parasympathetic-activated effects. Cardiac autonomic rebalancing strategy was considered as an important therapeutic approach to myocardial...


2013 ◽  
Vol 34 (suppl 1) ◽  
pp. P5024-P5024
Author(s):  
T. Tobisawa ◽  
T. Sato ◽  
S. Yuda ◽  
T. Miki ◽  
M. Tanno ◽  
...  

2019 ◽  
Vol 42 (6) ◽  
pp. 712-721 ◽  
Author(s):  
Kennosuke Yamashita ◽  
Wataru Igawa ◽  
Morio Ono ◽  
Takehiko Kido ◽  
Toshitaka Okabe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document