scholarly journals VSP polarization angles determination: Wysin-1 processing case study

2018 ◽  
Vol 66 (5) ◽  
pp. 1047-1062 ◽  
Author(s):  
Mateusz Zaręba ◽  
Tomasz Danek

Abstract In this paper, we present an analysis of borehole seismic data processing procedures required to obtain high-quality vertical stacks and polarization angles in the case of walkaway VSP (vertical seismic profile) data gathered in challenging conditions. As polarization angles are necessary for more advanced procedures like anisotropy parameters determination, their quality is critical for proper media description. Examined Wysin-1 VSP experiment data indicated that the best results can be obtained when rotation is performed for each shot on data after de-noising and vertical stacking of un-rotated data. Additionally, we proposed a procedure of signal matching that can substantially increase data quality.

Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. S135-S150
Author(s):  
Jakob B. U. Haldorsen ◽  
Leif Jahren

We have determined how the measured polarization and traveltime for P- and S-waves can be used directly with vertical seismic profile data for estimating the salt exit points in a salt-proximity survey. As with interferometry, the processes described use only local velocities. For the data analyzed in this paper, our procedures have confirmed the location, inferred from surface-seismic data, of the flank of a steeply dipping salt body near the well. This has provided us more confidence in the estimated reservoir extent moving toward the salt face, which in turn has added critical information for the economic evaluation of a possible new well into the reservoir. We also have found that ray-based vector migration, based on the assumptions of locally plane wavefronts and locally plane formation interfaces, can be used to create 3D reflection images of steeply dipping sediments near the well, again using only local velocities. Our local reflection images have helped confirm the dips of the sediments between the well and the salt flank. Because all parameters used in these processes are local and can be extracted from the data themselves, the processes can be considered to be self-sufficient.


Geophysics ◽  
1993 ◽  
Vol 58 (11) ◽  
pp. 1662-1675
Author(s):  
Ronald C. Hinds ◽  
Richard Kuzmiski ◽  
Neil L. Anderson ◽  
Barry R. Richards

The deltaic sandstones of the basal Kiskatinaw Formation (Stoddard Group, upper Mississippian) were preferentially deposited within structural lows in a regime characterized by faulting and structural subsidence. In the Fort St. John Graben area, northwest Alberta, Canada, these sandstone facies can form reservoirs where they are laterally sealed against the flanks of upthrown fault blocks. Exploration for basal Kiskatinaw reservoirs generally entails the acquisition and interpretation of surface seismic data prior to drilling. These data are used to map the grabens in which these sandstones were deposited, and the horst blocks which act as lateral seals. Subsequent to drilling, vertical seismic profile (VSP) surveys can be run. These data supplement the surface seismic and well log control in that: 1) VSP data can be directly correlated to surface seismic data. As a result, the surface seismic control can be accurately tied to the subsurface geology; 2) Multiples, identified on VSP data, can be deconvolved out of the surface seismic data; and 3) The subsurface, in the vicinity of the borehole, is more clearly resolved on the VSP data than on surface seismic control. On the Fort St. John Graben data set incorporated into this paper, faults which are not well resolved on the surface seismic data, are better delineated on VSP data. The interpretive processing of these data illustrate the use of the seismic profiling technique in the search for hydrocarbons in structurally complex areas.


Geophysics ◽  
1994 ◽  
Vol 59 (7) ◽  
pp. 1171-1171
Author(s):  
Miodrag M. Roksandic

Hinds et al.’s paper is an interesting case history describing the acquisition and interpretive processing of VSP data and presenting an integrated interpretation of well log, surface seismic, and vertical seismic profile data. However, a question of principle arises. What is an integrated interpretation?


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. C229-C237 ◽  
Author(s):  
Shibo Xu ◽  
Alexey Stovas

The moveout approximations are commonly used in seismic data processing such as velocity analysis, modeling, and time migration. The anisotropic effect is very obvious for a converted wave when estimating the physical and processing parameters from the real data. To approximate the traveltime in an elastic orthorhombic (ORT) medium, we defined an explicit rational-form approximation for the traveltime of the converted [Formula: see text]-, [Formula: see text]-, and [Formula: see text]-waves. To obtain the expression of the coefficients, the Taylor-series approximation is applied in the corresponding vertical slowness for three pure-wave modes. By using the effective model parameters for [Formula: see text]-, [Formula: see text]-, and [Formula: see text]-waves, the coefficients in the converted-wave traveltime approximation can be represented by the anisotropy parameters defined in the elastic ORT model. The accuracy in the converted-wave traveltime for three ORT models is illustrated in numerical examples. One can see from the results that, for converted [Formula: see text]- and [Formula: see text]-waves, our rational-form approximation is very accurate regardless of the tested ORT model. For a converted [Formula: see text]-wave, due to the existence of cusps, triplications, and shear singularities, the error is relatively larger compared with PS-waves.


1984 ◽  
Vol 24 (1) ◽  
pp. 429
Author(s):  
F. Sandnes W. L. Nutt ◽  
S. G. Henry

The improvement of acquisition and processing techniques has made it possible to study seismic wavetrains in boreholes.With careful acquisition procedures and quantitative data processing, one can extract useful information on the propagation of seismic events through the earth, on generation of multiples and on the different reflections coming from horizons that may not all be accessible by surface seismic.An extensive borehole seismic survey was conducted in a well in Conoco's contract area 'Block B' in the South China Sea. Shots at 96 levels were recorded, and the resulting Vertical Seismic Profile (VSP) was carefully processed and analyzed together with the Synthetic Seismogram (Geogram*) and the Synthetic Vertical Seismic Profile (Synthetic VSP).In addition to the general interpretation of the VSP data, i.e. time calibration of surface seismic, fault identification, VSP trace inversion and VSP Direct Signal Analysis, the practical inclusion of VSP data in the reprocessing of surface seismic data was studied. Conclusions that can be drawn are that deconvolution of surface seismic data using VSP data must be carefully approached and that VSP can be successfully used to examine phase relationships in seismic data.


2019 ◽  
Author(s):  
Dmitry Popik ◽  
Roman Pevzner ◽  
Stanislav Glubokovskikh ◽  
Valeriya Shulakova ◽  
Sasha Ziramov

Geophysics ◽  
1993 ◽  
Vol 58 (11) ◽  
pp. 1676-1688
Author(s):  
Ronald C. Hinds ◽  
Neil L. Anderson ◽  
Richard Kuzmiski

On the basis of conventional surface seismic data, the 13–15–63–25W5M exploratory well was drilled into a low‐relief Leduc Formation reef (Devonian Woodbend Group) in the Simonette area, west‐central Alberta, Canada. The well was expected to intersect the crest of the reef and encounter about 50–60 m of pay; unfortunately it was drilled into a flank position and abandoned. The decision to abandon the well, as opposed to whipstocking in the direction of the reef crest, was made after the acquisition and interpretive processing of both near( and far‐offset (252 and 524 m, respectively) vertical seismic profile (VSP) data, and after the reanalysis of existing surface seismic data. The near‐ and far‐offset VSPs were run and interpreted while the drill rig remained on‐site, with the immediate objectives of: (1) determining an accurate tie between the surface seismic data and the subsurface geology; and (2) mapping relief along the top of the reef over a distance of 150 m from the 13–15 well location in the direction of the adjacent productive 16–16 well (with a view to whipstocking). These surveys proved to be cost‐effective in that the operators were able to determine that the crest of the reef was out of the target area, and that whipstocking was not a viable alternative. The use of VSP surveys in this situation allowed the operators to avoid the costs associated with whipstocking, and to feel confident with their decision to abandon the well.


Sign in / Sign up

Export Citation Format

Share Document