High-efficiency calculation method for watershed rainfall-runoff routing using one-dimensional dynamic wave equations

2017 ◽  
Vol 14 (10) ◽  
pp. 2097-2105
Author(s):  
Jun Li ◽  
Xiao-jun Guo ◽  
Ling-ling Zhao
Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1447 ◽  
Author(s):  
Park ◽  
Kim ◽  
Kim

We developed a GPU-accelerated 2D physically based distributed rainfall runoff model for a PC environment. The governing equations were derived from the diffusive wave model for surface flow and the Horton infiltration model for rainfall loss. A numerical method for the diffusive wave equations was implemented based on a Godunov-type finite volume scheme. The flux at the computational cell interface was reconstructed using the piecewise linear monotonic upwind scheme for conservation laws with a van Leer slope total variation diminishing limiter. Parallelization was implemented using CUDA-Fortran with an NVIDIA GeForce GTX 1060 GPU. The proposed model was tested and verified against several 1D and 2D rainfall runoff processes with various topographies containing depressions. Simulated hydrographs, water depth, and velocity were compared to analytical solutions, dynamic wave modeling results, and measurement data. The diffusive wave model reproduced the runoff processes of impermeable basins with results similar to those of analytical solutions and the numerical results of a dynamic wave model. For ideal permeable basins containing depressions such as furrows and ponds, physically reasonable rainfall runoff processes were observed. From tests on a real basin with complex terrain, reasonable agreement with the measured data was observed. The performance of parallel computing was very efficient as the number of grids increased, achieving a maximum speedup of approximately 150 times compared to a CPU version using an Intel i7 4.7-GHz CPU in a PC environment.


2011 ◽  
Vol 8 (5) ◽  
pp. 8865-8901
Author(s):  
P. Noel ◽  
A. N. Rousseau ◽  
C. Paniconi

Abstract. Subdivision of catchment into appropriate hydrological units is essential to represent rainfall-runoff processes in hydrological modelling. The commonest units used for this purpose are hillslopes (e.g. Fan and Bras, 1998; Troch et al., 2003). Hillslope width functions can therefore be utilised as one-dimensional representation of three-dimensional landscapes by introducing profile curvatures and plan shapes. An algorithm was developed to delineate and extract hillslopes and hillslope width functions by introducing a new approach to calculate an average profile curvature and plan shape. This allows the algorithm to be independent of digital elevation model resolution and to associate hillslopes to nine elementary landscapes according to Dikau (1989). This algortihm was tested on two flat and steep catchments of the province of Quebec, Canada. Results showed great area coverage for hillslope width function over individual hillslopes and entire watershed.


2017 ◽  
Vol 95 (3) ◽  
pp. 305-309 ◽  
Author(s):  
Haifeng Xu

We present a simple scheme of high-efficiency one-dimensional (1D) atom localization via manipulation of excited state population in a four-level inverted-Y atomic system. Because of the joint quantum interference induced by the two standing-wave fields, the 100% detecting probability of the atom in the subwavelength domain appears when the corresponding conditions are satisfied. The proposed scheme may open a promising way to achieve high-precision and high-efficiency 1D atom localization, which provides some potential applications to spatially selective single-qubit phase gate, entangling gates, and quantum error correction for quantum information processing.


The two pairs of one-dimensional wave equations which govern the odd and the even-parity perturbations of the Reissner–Nordström black hole are derived directly from a treatment of its metric perturbations. The treatment closely parallels the corresponding treatment in the context of the Schwarzschild black hole.


2012 ◽  
Vol 43 (1-2) ◽  
pp. 123-134 ◽  
Author(s):  
Danrong Zhang ◽  
Liru Zhang ◽  
Yiqing Guan ◽  
Xi Chen ◽  
Xinfang Chen

The Xinanjiang rainfall–runoff model has been successfully applied in many humid and sub-humid areas in China since 1973. The wide application is due to the simple model structure, the clear physical meaning of the parameters and the well-defined model calibration procedure. However, due to a data scarcity problem and short runoff concentration time, its applications to small drainage basins are difficult. Therefore, we investigate the model application in Lianghui, a small drainage basin of Zhejiang province in China. By using generalized likelihood uncertainty estimation (GLUE) methodology, the sensitivity of parameters of Xinanjiang model was investigated. The data clearly showed that equifinality phenomenon was evident in both water balance parameter calibration and runoff routing parameter calibration procedures. The results showed that K (evapotranspiration conversion coefficient), Cs (recession constant in channel system) and Sm (areal free water storage capacity of surface soil) are the most sensitive parameters for the water balance parameter calibration while Cs, Sm and Wm (mean area tension water capacity) are the most sensitive parameters for runoff routing parameter calibration. The conclusion is favourable for understanding parameters of Xinanjiang model in order to provide valuable scientific information for simulating hydrological processes in small drainage basins.


Sign in / Sign up

Export Citation Format

Share Document