scholarly journals 2D GPU-Accelerated High Resolution Numerical Scheme for Solving Diffusive Wave Equations

Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1447 ◽  
Author(s):  
Park ◽  
Kim ◽  
Kim

We developed a GPU-accelerated 2D physically based distributed rainfall runoff model for a PC environment. The governing equations were derived from the diffusive wave model for surface flow and the Horton infiltration model for rainfall loss. A numerical method for the diffusive wave equations was implemented based on a Godunov-type finite volume scheme. The flux at the computational cell interface was reconstructed using the piecewise linear monotonic upwind scheme for conservation laws with a van Leer slope total variation diminishing limiter. Parallelization was implemented using CUDA-Fortran with an NVIDIA GeForce GTX 1060 GPU. The proposed model was tested and verified against several 1D and 2D rainfall runoff processes with various topographies containing depressions. Simulated hydrographs, water depth, and velocity were compared to analytical solutions, dynamic wave modeling results, and measurement data. The diffusive wave model reproduced the runoff processes of impermeable basins with results similar to those of analytical solutions and the numerical results of a dynamic wave model. For ideal permeable basins containing depressions such as furrows and ponds, physically reasonable rainfall runoff processes were observed. From tests on a real basin with complex terrain, reasonable agreement with the measured data was observed. The performance of parallel computing was very efficient as the number of grids increased, achieving a maximum speedup of approximately 150 times compared to a CPU version using an Intel i7 4.7-GHz CPU in a PC environment.

2020 ◽  
Author(s):  
Minyeob Jeong ◽  
Jongho Kim ◽  
Dae-Hong Kim

<p>A method to predict runoff based on the instantaneous unit hydrograph and dynamic wave approximation is proposed. The method is capable of generating IUH of a watershed without the need of observed rainfall and runoff data, and only topography and surface roughness of a watershed are needed. IUHs were generated using a dynamic wave model and S-hydrograph method, and IUH generated was a function of both watershed and rainfall properties. The ordinate of IUH depends on the rainfall intensities, and the peak value of IUH was proportional to the rainfall intensity while the time to peak of the IUH was inversely proportional to the rainfall intensity.  Corresponding IUHs for different rainfall intensities were used to generate runoff hydrographs. Since the IUH is generated using a dynamic wave model, it can be a tool to physically simulate the rainfall-runoff processes. Also, nonlinear rainfall-runoff relationship can be taken into account by expressing IUH as a function of rainfall excess intensity. Several test results in ideal basins and in a real watershed show that the proposed method has a good capability in predicting runoff, while several limitations remain.</p><p>Keywords: rainfall-runoff, instantaneous unit hydrograph, dynamic wave model</p>


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 902
Author(s):  
Zhi Li ◽  
Ben R. Hodges

A new high-performance numerical model (Frehg) is developed to simulate water flow in shallow coastal wetlands. Frehg solves the 2D depth-integrated, hydrostatic, Navier–Stokes equations (i.e., shallow-water equations) in the surface domain and the 3D variably-saturated Richards equation in the subsurface domain. The two domains are asynchronously coupled to model surface-subsurface exchange. The Frehg model is applied to evaluate model sensitivity to a variety of simplifications that are commonly adopted for shallow wetland models, especially the use of the diffusive wave approximation in place of the traditional Saint-Venant equations for surface flow. The results suggest that a dynamic model for momentum is preferred over diffusive wave model for shallow coastal wetlands and marshes because the latter fails to capture flow unsteadiness. Under the combined effects of evaporation and wetting/drying, using diffusive wave model leads to discrepancies in modeled surface-subsurface exchange flux in the intertidal zone where strong exchange processes occur. It indicates shallow wetland models should be built with (i) dynamic surface flow equations that capture the timing of inundation, (ii) complex topographic features that render accurate spatial extent of inundation, and (iii) variably-saturated subsurface flow solver that is capable of modeling moisture change in the subsurface due to evaporation and infiltration.


2012 ◽  
Vol 518-523 ◽  
pp. 4273-4277
Author(s):  
Huang Jinbai ◽  
Wang Bin ◽  
Hinokidani Osamu ◽  
Kajikawa Yuki

In order to achieve the accurate calculation of “rainfall-runoff” process combined with snowmelt and to provide a useful numerical method for estimating surface water resources in a basin, a runoff numerical calculation model of “rainfall-runoff” process combined with snowmelt was developed for a distributive hydrological model. Numerical method on “Rainfall-runoff” process was set up by applying kinematic wave theory, and calculations on snowmelt were made using energy budget method. Validity of the model was verified through numerical simulation of the observed surface flow. Results of the error analysis indicated that a large error existed between the numerical results and the observed ones without considering snowmelt whereas the error was at the permissible range of criterion (< 3 %) by considering snowmelt. The results showed that the snowmelt calculation should be considered at snow melt area when performing the runoff calculation.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1581
Author(s):  
Mohamed Alkassem Alosman ◽  
Stéphane Ruy ◽  
Samuel Buis ◽  
Patrice Lecharpentier ◽  
Jean Bader ◽  
...  

Surface irrigation is known as a highly water-consuming system and needs to be optimized to save water. Models can be used for this purpose but require soil parameters at the field scale. This paper aims to estimate effective soil parameters by combining: (i) a surface flow-infiltration model, namely CALHY; (ii) an automatic fitting algorithm based on the SIMPLEX method; and (iii) easily accessible and measurable data, some of which had never been used in such a process, thus minimizing parameter estimation errors. The validation of the proposed approach was performed through three successive steps: (1) examine the physical meaning of the fitted parameters; (2) verify the accuracy of the proposed approach using data that had not been served in the fitting process; and (3) validate using data obtained from independent irrigation events. Three parameters were estimated with a low uncertainty: the saturated hydraulic conductivity Ks, the hydraulic roughness k, and the soil water depletion ∆θ. The estimation uncertainty of the soil surface depressional storage parameter H0 was of the same order of magnitude of its value. All experimental datasets were simulated very well. Performance criteria were similar during both the fitting and validation stages.


Author(s):  
Fatima-zahra Mihami ◽  
Volker Roeber

We present an efficient and robust numerical model for the solution of the Shallow Water Equations with the objective to develop the numerical foundation for an advanced free surface flow solver. The numerical solution is based on an explicit Finite Volume scheme on a staggered grid to ensure the conservation of mass and momentum across flow discontinuities and wet-dry transitions. This leads to an accurate numerical solution at low computational cost without the need for Riemann solvers. The efficiency of the lean numerical structure is further optimized through a CUDA-GPU implementation.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/xMnK_r7Tj1Q


2020 ◽  
Vol 62 (2) ◽  
pp. 159-169
Author(s):  
Shino Sakaguchi ◽  
Keisuke Nakayama ◽  
Thuy Thi Thu Vu ◽  
Katsuaki Komai ◽  
Peter Nielsen

2006 ◽  
Vol 54 (6-7) ◽  
pp. 49-56 ◽  
Author(s):  
S. Thorndahl ◽  
C. Johansen ◽  
K. Schaarup-Jensen

In numerical modelling of rainfall caused runoff in urban sewer systems an essential parameter is the hydrological reduction factor which defines the percentage of the impervious area contributing to the surface flow towards the sewer. As the hydrological processes during a rainfall are difficult to determine with significant precision the hydrological reduction factor is implemented to account all hydrological losses except the initial loss. This paper presents an inconsistency between calculations of the hydrological reduction factor, based on measurements of rainfall and runoff, and till now recommended literature values for residential areas. It is proven by comparing rainfall-runoff measurements from four different residential catchments that the literature values of the hydrological reduction factor are over-estimated for this type of catchment. In addition, different catchment descriptions are presented in order to investigate how the hydrological reduction factor depends on the level of detail regarding the catchment description. When applying a total survey of the catchment area, including all possible impervious surfaces, a hydrological reduction factor of approximately 0.5 for residential areas with mainly detached houses is recommended–contrary to the literature recommended values of 0.7–0.9.


Sign in / Sign up

Export Citation Format

Share Document