Optimal array layout of cylindrical baffles to reduce energy of rock avalanche

Author(s):  
Yu-zhang Bi ◽  
Dong-po Wang ◽  
Xian-lei Fu ◽  
Yi-xiong Lin ◽  
Xin-po Sun ◽  
...  
Keyword(s):  
2017 ◽  
Author(s):  
Jeffrey A. Coe ◽  
◽  
Erin K. Bessette-Kirton ◽  
Rex L. Baum ◽  
Joel B. Smith ◽  
...  

2018 ◽  
Author(s):  
Anna Stanczyk ◽  
◽  
Jeffrey R. Moore ◽  
Olivia Kronig ◽  
Brendon J. Quirk ◽  
...  

Landslides ◽  
2021 ◽  
Author(s):  
Tapas Ranjan Martha ◽  
Priyom Roy ◽  
Nirmala Jain ◽  
K. Vinod Kumar ◽  
P. Sashivardhan Reddy ◽  
...  
Keyword(s):  

Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 331
Author(s):  
Selçuk Aksay ◽  
Susan Ivy-Ochs ◽  
Kristina Hippe ◽  
Lorenz Grämiger ◽  
Christof Vockenhuber

The Säntis nappe is a complex fold-and-thrust structure in eastern Switzerland, consisting of numerous tectonic discontinuities and a range of hillslopes prone to landsliding and large slope failures that modify the topography irreversibly. A slope failure, namely the Sennwald rock avalanche, occurred in the southeast wall of this fold-and-thrust structure due to the rock failure of Lower Cretaceous Helvetic limestones along the Rhine River valley. In this research, this palaeolandslide is examined in a multidisciplinary approach for the first time with detection and mapping of avalanche deposits, dynamic run-out modelling and cosmogenic nuclide dating. During the rock failure, the avalanche deposits were transported down the hillslope in a spreading-deck fashion, roughly preserving the original stratigraphic sequence. The distribution of landslide deposits and surface exposure age of the rock failure support the hypothesis that the landslide was a single catastrophic event. The 36Cl surface exposure age of avalanche deposits indicates an age of 4.3 ± 0.5 ka. This time coincides with a notably wet climate period, noted as a conditioning factor for landslides across the Alps in the mid-Holocene. The contemporaneity of our event at its location in the Eastern Alps provide additional support for the contention of increased regional seismic activity in mid-Holocene.


2021 ◽  
Vol 11 (12) ◽  
pp. 5751
Author(s):  
Seyed Ali Mousavi Tayebi ◽  
Saeid Moussavi Tayyebi ◽  
Manuel Pastor

Due to the growing populations in areas at high risk of natural disasters, hazard and risk assessments of landslides have attracted significant attention from researchers worldwide. In order to assess potential risks and design possible countermeasures, it is necessary to have a better understanding of this phenomenon and its mechanism. As a result, the prediction of landslide evolution using continuum dynamic modeling implemented in advanced simulation tools is becoming more important. We analyzed a depth-integrated, two-phase model implemented in two different sets of code to stimulate rapid landslides, such as debris flows and rock avalanches. The first set of code, r.avaflow, represents a GIS-based computational framework and employs the NOC-TVD numerical scheme. The second set of code, GeoFlow-SPH, is based on the mesh-free numerical method of smoothed particle hydrodynamics (SPH) with the capability of describing pore pressure’s evolution along the vertical distribution of flowing mass. Two real cases of an Acheron rock avalanche and Sham Tseng San Tsuen debris flow were used with the best fit values of geotechnical parameters obtained in the prior modeling to investigate the capabilities of the sets of code. Comparison of the results evidenced that both sets of code were capable of properly reproducing the run-out distance, deposition thickness, and deposition shape in the benchmark exercises. However, the values of maximum propagation velocities and thickness were considerably different, suggesting that using more than one set of simulation code allows us to predict more accurately the possible scenarios and design more effective countermeasures.


2019 ◽  
Vol 7 (4) ◽  
pp. 929-947 ◽  
Author(s):  
Michele Delchiaro ◽  
Marta Della Seta ◽  
Salvatore Martino ◽  
Maryam Dehbozorgi ◽  
Reza Nozaem

Abstract. The Seymareh landslide, detached ∼10 ka from the northeastern flank of the Kabir-kuh fold (Zagros Mts., Iran), is recognized worldwide as the largest rock slope failure (44 Gm3) ever recorded on the exposed Earth surface. Detailed studies have been performed that have described the landslide mechanism and different scenarios have been proposed for explaining the induced landscape changes. The purpose of this study is to provide still missing time constraints on the evolution of the Seymareh River valley, before and after the emplacement of the Seymareh landslide, to highlight the role of geomorphic processes both as predisposing factors and as response to the landslide debris emplacement. We used optically stimulated luminescence (OSL) to date lacustrine and fluvial terrace sediments, whose plano-altimetric distribution has been correlated to the detectable knickpoints along the Seymareh River longitudinal profile, allowing the reconstruction of the evolutionary model of the fluvial valley. We infer that the knickpoint migration along the main river and the erosion wave propagation upstream through the whole drainage network caused the stress release and the ultimate failure of the rock mass involved in the landslide. We estimated that the stress release activated a mass rock creep (MRC) process with gravity-driven deformation processes occurring over an elapsed time-to-failure value on the order of 102 kyr. We estimated also that the Seymareh damming lake persisted for ∼3500 years before starting to empty ∼6.6 ka due to lake overflow. A sedimentation rate of 10 mm yr−1 was estimated for the lacustrine deposits, which increased up to 17 mm yr−1 during the early stage of lake emptying due to the increased sediment yield from the lake tributaries. We calculated an erosion rate of 1.8 cm yr−1 since the initiation of dam breaching by the Seymareh River, which propagated through the drainage system up to the landslide source area. The evolutionary model of the Seymareh River valley can provide the necessary constraints for future stress–strain numerical modeling of the landslide slope to reproduce the MRC and demonstrate the possible role of seismic triggering in prematurely terminating the creep-controlled time-to-failure pathway for such an extremely large case study.


2013 ◽  
Vol 170 (4) ◽  
pp. 685-700 ◽  
Author(s):  
Nicholas J. Roberts ◽  
Stephen G. Evans
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document