THE WEST SALT CREEK ROCK AVALANCHE, SAG POND, AND OUTBURST FLOOD: MORPHOLOGICAL AND SEDIMENTOLOGICAL SIGNATURES FROM A SERIES OF EXTRAORDINARY EVENTS

2017 ◽  
Author(s):  
Jeffrey A. Coe ◽  
◽  
Erin K. Bessette-Kirton ◽  
Rex L. Baum ◽  
Joel B. Smith ◽  
...  
2016 ◽  
Author(s):  
Rex L. Baum ◽  
◽  
Jeffrey A. Coe ◽  
John W. Geiger ◽  
Erin K. Bessette-Kirton

Geosphere ◽  
2016 ◽  
Vol 12 (2) ◽  
pp. 607-631 ◽  
Author(s):  
Jeffrey A. Coe ◽  
Rex L. Baum ◽  
Kate E. Allstadt ◽  
Bernard F. Kochevar ◽  
Robert G. Schmitt ◽  
...  

2021 ◽  
Author(s):  
Anand Kumar Pandey ◽  
Kotluri Sravan Kumar ◽  
Virendra Mani Tiwari ◽  
Puranchand Rao ◽  
Kirsten Cook ◽  
...  

<p>The slope instability and associated mass wasting are among the most efficient surface gradation processes in the bedrock terrain that produce dramatic landscape change and associated hazards. The wedge failure in periglacial Higher Himalaya terrain on 7th February in Chamoli, Uttarakhand (India) produced >1.5 km high rock avalanche, which amalgamated with the glacial debris on the frozen river bed produced massive debris flow along the high gradient Rishi Ganga catchment. The high-velocity debris flow and a surge of high flood led to extensive loss of life and infrastructures and issuing the extreme event flood warning along the Alakananda-Ganga river, despite there was no immediate extreme climatic event. The affected region is the locus of extreme mass wasting events associated with Glacial Lake Outburst Flood (GLOF) and Landslide Lake Outburst Flood (LLOF) in the recent past. We analyzed the landscape to understand its control on the 7th February 2021 Rishi Ganga event and briefly discuss other significant events in the adjoining region e.g. 1893/1970 Gohna Tal/Lake LLOF and 2013-Uttarakhand events in Chamoli, which have significance in understanding the surface processes in Higher Himalayan terrain.</p>


2021 ◽  
Author(s):  
Marten Geertsema ◽  
Brian Menounos ◽  
Dan Shugar ◽  
Tom Millard ◽  
Brent Ward ◽  
...  

<p>On 28 November 2020, about 18 Mm<sup>3</sup> of quartz diorite detached from a steep rock face at the head of Elliot Creek in the southern Coast Mountains of British Columbia. The rock mass fragmented as it descended 1000 m and flowed across a debris-covered glacier. The rock avalanche was recorded on local and distant seismometers, with long-period amplitudes equivalent to a M 4.9 earthquake. Local seismic stations detected several earthquakes of magnitude <2.4 over the minutes and hours preceding the slide, though no causative relationship is yet suggested. More than half of the rock debris entered a 0.6 km<sup>2 </sup>lake, where it generated a huge displacement wave that overtopped the moraine at the far end of the lake. Water that left the lake was channelized along Elliot Creek, deeply scouring the valley fill over a distance of 10 km before depositing debris on a 2 km<sup>2</sup> fan in the Southgate River valley. Debris temporarily dammed the river, and turbid water continued down the Southgate River to Bute Inlet, where it produced a 70 km turbidity current and altered turbidity and water chemistry in the inlet for weeks. The landslide followed a century of rapid glacier retreat and thinning that exposed a growing lake basin. The outburst flood extended the damage of the landslide far beyond the limit of the landslide, destroying forest and impacting salmon spawning and rearing habitat. We expect more cascading impacts from landslides in the glacierized mountains of British Columbia as glaciers continue to retreat, exposing water bodies below steep slopes while simultaneously removing buttressing support.</p>


Geomorphology ◽  
2015 ◽  
Vol 241 ◽  
pp. 135-144 ◽  
Author(s):  
Lisa M. Harrison ◽  
Stuart A. Dunning ◽  
John Woodward ◽  
Timothy R.H. Davies

Author(s):  
Antoine Guerin ◽  
Antonio Abellán ◽  
Battista Matasci ◽  
Michel Jaboyedoff ◽  
Marc-Henri Derron ◽  
...  

Abstract. In June 2005, a series of major rockfall events completely wiped out the Bonatti Pillar located in the legendary Drus West face (Mont-Blanc massif, France). Terrestrial LiDAR scans of the face were acquired after this event but no pre-event point cloud is available. Thus, in order to reconstruct the volume and the shape of the collapsed blocks, a 3D model has been built using photogrammetry (SfM) based on 30 pictures collected on the Web. All these pictures were taken between September 2003 and May 2005. We then reconstructed the shape and volume of the fallen compartment by comparing the SfM model with terrestrial LiDAR data acquired in October 2005 and November 2011. The volume is calculated to 292’680 m3 (±5 %). This result is close to the value previously assessed by Ravanel and Deline (2008) for this same rock-avalanche (265’000 ± 10’000 m3). The difference between these two estimations can be explained by the rounded shape of the volume determined by photogrammetry, which may lead to a volume overestimation. However it is not excluded that the volume calculated by Ravanel and Deline (2008) is slightly underestimated, the thickness of the blocks having been assessed manually from historical photographs.


2021 ◽  
Author(s):  
Ekaterina Kornilova ◽  
Inna Krylenko ◽  
Ekaterina Rets ◽  
Yuri Motovilov ◽  
Evgeniy Bogachenko ◽  
...  

<p>The ongoing intensive deglaciation in high mountain areas is resulting in great instability of mountainous headwater regions, which could significantly extreme hydrological events In this research a model “chain” of hydrodynamic and runoff formation models is adopted to simulate a glacier lake outburst flood (GLOF) from Bashkara Lake, situated in headwater region of the Baksan River and its effect on the downstream.</p><p>Two-dimensional hydrodynamic model for the Adylsu River valley was developed, based on the STREAM_2D software (author V. Belikov). The ECOMAG runoff formation model (author Yu. Motovilov) for the entire Baksan River basin was adopted. The output flood hydrograph from the STREAM_2D model was set as additional input into the Baksan River runoff formation model in the upper reaches of the Adylsu River below Bashkara and Lapa Lakes.</p><p>Based on field surveys and remote sensing data, actual Bashkara Lake GLOF on September 1, 2017 was modelled. The GLOF event was triggered by extreme precipitation that caused overwetting of the dam and increase in the lake water level. The peak GLOF discharge according to modeling was estimated as 710 m<sup>3</sup>/s at the dambreak section and 320 m<sup>3</sup>/s at the Adylsu River mouth 40 minutes after the outburst. Two possible mechanisms for re-outburst of Bashkara Lake were taken into account: the rock avalanche impact, forming displacement waves, and the lake outburst due to increase in the water level, accompanied by expansion of the existing dam break. Under the rock avalanche scenario, there was no significant model response. Based on the results of modeling of the second re-outburst scenario, the maximum discharge of the outflow was estimated as 298 m<sup>3</sup>/s at the dambreak section and 101 m<sup>3</sup>/s in the Adylsu River mouth.</p><p>As a result of model chain application contribution of GLOFs and precipitation to an increase in peak discharge along the Baksan River was estimated. The actual outburst flood amounted to 45% and the precipitation - to 30% of the peak flow in the Baksan River at the mouth of the Adylsu river (10 km from the outburst site). In Tyrnyauz (40 km from the outburst site) the components of the outburst flood and precipitation were equalized, and in Zayukovo (70 km from the outburst site) the outburst flood contributed only about 20% to the peak flow, whereas precipitation - 44%.</p><p>Similar calculations were made for a potential re-outburst flood, taking into account expected climate changes with an increase in air temperatures by 2°С and an increase in precipitation by 10% in winter and decrease by 10% in summer. The maximum discharge of the re-outburst flood in the Adylsu river mouth according to modeling can be approximately 3 times less than discharge of the actual outburst on September 1, 2017 and can contribute up to 18% to peak discharge in the Baksan River at the confluence with the Adylsu river.</p><p>The Baksan River runoff formation model was developed under support of RFBR, project number 20-35-70024. The glaciation changes and climate impact scenarios analysis was funded by RFBR and the Royal Society of London (RS), project number 21-55-10003.</p>


2017 ◽  
Vol 17 (7) ◽  
pp. 1207-1220 ◽  
Author(s):  
Antoine Guerin ◽  
Antonio Abellán ◽  
Battista Matasci ◽  
Michel Jaboyedoff ◽  
Marc-Henri Derron ◽  
...  

Abstract. In June 2005, a series of major rockfall events completely wiped out the Bonatti Pillar located in the legendary Drus west face (Mont Blanc massif, France). Terrestrial lidar scans of the west face were acquired after this event, but no pre-event point cloud is available. Thus, in order to reconstruct the volume and the shape of the collapsed blocks, a 3-D model has been built using photogrammetry (structure-from-motion (SfM) algorithms) based on 30 pictures collected on the Web. All these pictures were taken between September 2003 and May 2005. We then reconstructed the shape and volume of the fallen compartment by comparing the SfM model with terrestrial lidar data acquired in October 2005 and November 2011. The volume is calculated to 292 680 m3 (±5.6 %). This result is close to the value previously assessed by Ravanel and Deline (2008) for this same rock avalanche (265 000 ± 10 000 m3). The difference between these two estimations can be explained by the rounded shape of the volume determined by photogrammetry, which may lead to a volume overestimation. However it is not excluded that the volume calculated by Ravanel and Deline (2008) is slightly underestimated, the thickness of the blocks having been assessed manually from historical photographs.


Sign in / Sign up

Export Citation Format

Share Document