rock avalanche
Recently Published Documents


TOTAL DOCUMENTS

388
(FIVE YEARS 126)

H-INDEX

38
(FIVE YEARS 8)

2022 ◽  
Vol 77 (1) ◽  
pp. 21-37
Author(s):  
Alessandro De Pedrini ◽  
Christian Ambrosi ◽  
Cristian Scapozza

Abstract. As a contribution to the knowledge of historical rockslides, this research focuses on the historical reconstruction, field mapping, and simulation of the expansion, through numerical modelling, of the 30 September 1513 Monte Crenone rock avalanche. Earth observation in 2-D and 3-D, as well as direct in situ field mapping, allowed the detachment zone and the perimeter and volume of the accumulation to be determined. Thanks to the reconstruction of the post-event digital elevation model based on historical topographic maps and the numerical modelling with the RAMMS::DEBRISFLOW software, the dynamics and runout of the rock avalanche were calibrated and reconstructed. The reconstruction of the runout model allowed confirmation of the historical data concerning this event, particularly the damming of the valley floor and the lake formation up to an elevation of 390 m a.s.l., which generated an enormous flood by dam breaching on 20 May 1515, known as the “Buzza di Biasca”.


Author(s):  
Yu-zhang Bi ◽  
Dong-po Wang ◽  
Xian-lei Fu ◽  
Yi-xiong Lin ◽  
Xin-po Sun ◽  
...  
Keyword(s):  

Landslides ◽  
2021 ◽  
Author(s):  
Bernd Zolitschka ◽  
Irene Sophie Polgar ◽  
Hermann Behling

AbstractThe timing of the Monte Peron Landslide is revised to 2890 cal. BP based on a radiocarbon-dated sediment stratigraphy of Lago di Vedana. This age fosters the importance of hydroclimatic triggers in the light of accelerating global warming with a predicted increase of precipitation enhancing the regional predisposition to large landslides. Moreover, a layer enriched in allochthonous organic and minerogenic detritus dating to the same wet period is interpreted as response to a younger and yet unidentified mass wasting event in the catchment of Lago di Vedana. Rock debris of the Monte Peron Landslide impounded the Cordevole River valley and created a landslide-dammed lake. Around AD 1150, eutrophication of this lacustrine ecosystem started with intensified human occupation – a process that ended 150 years later, when the river was diverted back into its original bed. Most likely, this occurred due to artificial opening of the river dam. In consequence, Lago di Vedana was isolated from an open and minerogenic to an endorheic and carbonaceous lacustrine system. After a monastery was established nearby in AD 1457, a second eutrophication process was initiated due to intensified land use linked with deforestation. Only in the eighteenth and nineteenth centuries, deposition of organic matter decreased coinciding with climatic (Little Ice Age) and cultural changes. Conversational measures are the likely reasons for a trend towards less eutrophic conditions since AD 1950.


Landslides ◽  
2021 ◽  
Author(s):  
Qiyi Lai ◽  
Jianjun Zhao ◽  
Runqiu Huang ◽  
Dujiang Wang ◽  
Nengpan Ju ◽  
...  

2021 ◽  
Author(s):  
Chuanxi Zhao ◽  
Wei Yang ◽  
Matthew Westoby ◽  
Baosheng An ◽  
Guangjian Wu ◽  
...  

Abstract. On 22 March 2021, a ~50 M m3  ice-rock avalanche occurred from 6500 m asl in the Sedongpu basin, southeastern Tibet. The avalanche transformed into a highly mobile flow which temporarily blocked the Yarlung Tsangpo river. The avalanche flow lasted ~5 minutes and produced substantial geomorphological reworking. This event, and previous ones from the basin, occurred concurrently with, or shortly after recorded positive air temperature anomalies. The occurrence of future large mass flows from the basin cannot be ruled out, and their impacts must be carefully considered given implications for sustainable hydropower and associated socioeconomic development in the region.


Geochronology ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 525-543
Author(s):  
Rachel K. Smedley ◽  
David Small ◽  
Richard S. Jones ◽  
Stephen Brough ◽  
Jennifer Bradley ◽  
...  

Abstract. A new luminescence erosion meter has huge potential for inferring erosion rates on sub-millennial scales for both steady and transient states of erosion, which is not currently possible with any existing techniques capable of measuring erosion. This study applies new rock luminescence techniques to a well-constrained scenario provided by the Beinn Alligin rock avalanche, NW Scotland. Boulders in this deposit are lithologically consistent and have known cosmogenic nuclide ages and independently derived Holocene erosion rates. We find that luminescence-derived exposure ages for the Beinn Alligin rock avalanche were an order of magnitude younger than existing cosmogenic nuclide exposure ages, suggestive of high erosion rates (as supported by field evidence of quartz grain protrusions on the rock surfaces). Erosion rates determined by luminescence were consistent with independently derived rates measured from boulder edge roundness. Inversion modelling indicates a transient state of erosion reflecting the stochastic nature of erosional processes over the last ∼4.5 kyr in the wet, temperate climate of NW Scotland. Erosion was likely modulated by known fluctuations in moisture availability and to a lesser extent temperature, which controlled the extent of chemical weathering of these highly lithified rocks prior to erosion. The use of a multi-elevated temperature, post-infra-red, infra-red stimulated luminescence (MET-pIRIR) protocol (50, 150 and 225 ∘C) was advantageous as it identified samples with complexities that would not have been observed using only the standard infra-red stimulated luminescence (IRSL) signal measured at 50 ∘C, such as that introduced by within-sample variability (e.g. surficial coatings). This study demonstrates that the luminescence erosion meter can infer accurate erosion rates on sub-millennial scales and identify transient states of erosion (i.e. stochastic processes) in agreement with independently derived erosion rates for the same deposit.


2021 ◽  
Vol 14 (20) ◽  
Author(s):  
Zhong Fu Wang ◽  
Man He ◽  
Yan Wang ◽  
Jingzhuo Yang ◽  
Haoyuan Li

Sign in / Sign up

Export Citation Format

Share Document