bavarian alps
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 13)

H-INDEX

21
(FIVE YEARS 1)

Zootaxa ◽  
2021 ◽  
Vol 4942 (3) ◽  
pp. 439-446
Author(s):  
JENS-HERMANN STUKE

Philygria doczkali spec. nov. is described from Zugspitze (Wetterstein Mountains, Germany) in the Bavarian Alps and Philygria dispar spec. nov. is described from southern Lower Saxony (Germany). 


2021 ◽  
Vol 13 (5) ◽  
pp. 918
Author(s):  
Ludger Timmen ◽  
Christian Gerlach ◽  
Till Rehm ◽  
Christof Völksen ◽  
Christian Voigt

In 2004, first absolute gravity (AG) measurements were performed on the top of Mt. Zugspitze (2 sites) and at the foot (1 site) and top (1 site) of Mt. Wank. Mt. Wank (summit height 1780 m) and Mt. Zugspitze (2960 m) are about 15 km apart from each other and belong geologically to different parts of the Northern Limestone Alps. Bridging a time span of 15 years, the deduced gravity variations for Zugspitze are in the order of 0.30 μm/s² with a standard uncertainty of 0.04 μm/s². The Wank stations (foot and top) show no significant gravity variation. The vertical stability of Wank summit is also confirmed by results of continuous GNSS recordings. Because an Alpine mountain uplift of 1 or 2 mm/yr cannot explain the obtained gravity decline at Zugspitze, the dominating geophysical contributions are assumed to be due to the diminishing glaciers in the vicinity. The modelled gravity trend caused by glacier retreat between epochs 1999 and 2018 amounts to 0.012 μm/s²/yr at both Zugspitze AG sites. This explains more than half of the observed gravity decrease. Long-term variations on inter-annual and climate-relevant decadal scale will be investigated in the future using as supplement superconducting gravimetry (installed in 2019) and GNSS equipment (since 2018).


Author(s):  
Ludger Timmen ◽  
Christian Gerlach ◽  
Till Rehm ◽  
Christof Völksen ◽  
Christian Voigt

In 2004, first absolute gravity (AG) measurements were performed on the mountain tops of Mt. Zugspitze (2 sites) and Mt. Wank (1 site), and at the Wank foot (1 site). Wank (summit height 1780 m) and Zugspitze (2960 m) are about 20 km apart from each other and belong geologically to different parts of the Northern Limestone Alps. Bridging a time span of 15 years, the deduced gravity variations for Zugspitze are in the order of 0.30 μm/s² with a standard uncertainty of 0.04 μm/s². The Wank stations (foot and top) show no significant gravity variation. The vertical stability of Wank summit is also confirmed by results of continuous GNSS recordings. Because an Alpine mountain uplift of 1 or 2 mm/yr cannot explain the obtained gravity decline at Zugspitze, the dominating geophysical contributions are assumed to be due to the diminishing glaciers in the vicinity. The modelled gravity trend caused by glacier retreat between epochs 1999 and 2018 amounts to -0.012 μm/s²/yr at both Zugspitze AG sites. This explains more than half of the observed gravity decrease. Long-term variations on inter-annual and climate-relevant decadal scale will be investigated in the future using as a supplement superconducting gravimetry (installed in 2019) and GNSS equipment (since 2018).


2020 ◽  
Vol 69 (2) ◽  
pp. 187-200
Author(s):  
Kerstin Pasda ◽  
Matthias López Correa ◽  
Philipp Stojakowits ◽  
Bernhard Häck ◽  
Jérôme Prieto ◽  
...  

Abstract. The finding of a partially preserved elk skeleton from the Bavarian Alps is reported. Remnants of an adult male were found, together with skeletal elements of juvenile moose calves, at the base of a talus cone in the pit cave Stiefelschacht, next to Lenggries (southern Germany). The adult's bones exhibited anthropogenic traces like cut marks and were radiocarbon-dated to the Late Iron Age. A projectile hole in the left shoulder blade and cut marks on the bones are indicative of hunting and meat usage. The elk remains were associated with several wild and domestic species such as ungulates and hare but were not, however, accompanied by archaeological artefacts. Other archaeological sites of the Late Iron Age are so far not known within a distance of less than 30 km to the Stiefelschacht. While the presence of elk during prehistoric times in the Alps has already been known before, the finds and the location are unique in that they are the first evidence of elk hunting during the Late Iron Age in the northern Alps.


2020 ◽  
Author(s):  
Ulrich E Stegmann

Abstract Background and Aims The study of intraspecific trait variation (ITV) in plants has a long history, dating back to the fourth century BC. Its existence was widely acknowledged by the end of the 18th century, although systematic and experimental studies commenced only a century later. However, the historiography of ITV has many gaps, especially with regard to early observations and visual documents. This note identifies an early depiction of plant ITV. Methods The botanical works of Johann Wolfgang von Goethe (1749–1832), a German writer and naturalist, were subjected to close reading. This included all publications and unpublished sources related to botany between 1785 and 1832 (e.g. notes, drafts, diaries, letters, drawings). This material is accessible in the multi-volume historical-critical edition of Goethe’s studies in natural science (Leopoldina-Ausgabe). Key Results A diary entry from 9 September 1786 described changes in leaf morphology along an elevation gradient in the Bavarian Alps. The leaves of an unidentified species of willow (Spix sp.) and gentian (Gentiana sp.) were said to become narrower with increasing elevation; leaves also stood further apart on twigs, and the latter became thinner. A crude drawing of two willow twigs illustrated the differences. Goethe conjectured that the differences were due to environmental conditions. Conclusions Goethe’s notes were anecdotal, and it is unclear whether the observed plant individuals actually belonged to the same species. Nevertheless, the notes represent an early and clear articulation of the hypothesis that changes in environmental conditions can cause ITV in a natural plant population. The drawing may be the earliest visual record of environmentally caused plant ITV in the wild.


2020 ◽  
Author(s):  
Michael Zech ◽  
Marcel Lerch ◽  
Marcel Bliedtner ◽  
Clemens Geitner ◽  
Dieter Schäfer ◽  
...  

<p>The archaeology of high mountain regions got high attention since the discovery of the copper age mummy called "Ötzi" in the Ötztaler Alps in 1991. Results of former archaeological research projects show that mesolithic hunter-gatherers lived in Alpine regions since the beginning of the Holocene, 11,700 years ago (Cornelissen & Reitmaier 2016). Amongst others, the Mesolithic site Ullafelsen (1860 m a.s.l.) and surroundings represent a very important archaeological reference site in the Fotsch Valley (Stubaier Alps, Tyrol) (Schäfer 2011). Many archaeological artifacts and fire places were found at different places in the Fotschertal, which provides evidence for the presence and the way of living of our ancestor. The "Mesolithic project Ullafelsen" includes different scientific disciplines ranging from high mountain archaeology over geology, geomorphology, soil science, sedimentology, petrography to palaeobotany (Schäfer 2011). Within an ongoing DFG project we aim at addressing questions related to past vegetation and climate, human history as well as their influence on pedogenesis from a biomarker and stable isotope perspective (cf. Zech et al. 2011). Our results for instance suggest that (i) the dominant recent and past vegetation can be chemotaxonomically differentiated based on leaf wax-derived <em>n</em>-alkane biomarkers, (ii) there is no evidence for buried Late Glacial topsoils being preserved on the Ullafelsen as argued by Geitner et al. (2014), rather humic-rich subsoils were formed as B<sub>h</sub>-horizons by podsolisation and (iii) marked vegetations changes likely associated with alpine pasture activities since the Bronce Age are documented in Holocene peat bogs in the Fotsch Valley. Nevertheless, there remain some challenges by joining all analytical data in order to get a consistent overall picture of human-environmental history of this high mountain region.</p><p>Cornelissen & Reitmaier (2016): Filling the gap: Recent Mesolithic discoveries in the central and south-eastern Swiss Alps. In: Quaternary International, 423.</p><p>Geitner, C., Schäfer, D., Bertola, S., Bussemer, S., Heinrich, K. und J. Waroszewski (2014): Landscape archaeological results and discussion of Mesolithic research in the Fotsch valley (Tyrol). In: Kerschner, H., Krainer, K. and C. Spötl: From the foreland to the Central Alps – Field trips to selected sites of Quaternary research in the Tyrolean and Bavarian Alps (DEUQUA EXCURSIONS), Berlin, 106-115.</p><p>Schäfer (2011): Das Mesolithikum-Projekt Ullafelsen (Teil 1). Mensch und Umwelt im Holozän Tirols (Band 1). 560 p., Innsbruck: Philipp von Zabern.</p><p>Zech, M., Zech, R., Buggle, B., Zöller, L. (2011): Novel methodological approaches in loess research - interrogating biomarkers and compound-specific stable isotopes. In: E&G Quaternary Science Journal, 60.</p>


2020 ◽  
Author(s):  
Peter Schack ◽  
Roland Pail ◽  
Thomas Gruber

<p>Around 100km south of Munich, the Institute of Astronomical and Physical Geodesy of the Technical University of Munich established a gravimetric-astrogeodetic testing ground over the last 20 years. Precise gravity values as well as vertical deflections exist for hundreds of points. End of 2019, a car-based strapdown inertial gravimetry survey was realized in this area along a ~25km track. For this track, a few gravity values and several vertical deflections (spacing around 200m) are available (Hirt and Flury 2008). Navigation-grade IMU (inertial measurement unit), GNSS (global navigation satellite systems) and additional relative gravimeter observations were recorded during the survey. With this setup, it is possible to evaluate the capabilities of terrestrial scalar and vector strapdown inertial gravimetry.</p><p>This contribution gives an overview about the testing ground, the recently conducted survey and the data processing. The main part treats the analyses regarding the accuracy of 1D- and 3D-strapdown inertial gravimetry. Furthermore, attention is payed to the kinematic IMU performance (noise behavior), the benefit of special IMU calibrations (Becker 2016) and a comparison of the results with pure model based gravity disturbances.</p><p><strong>Literature</strong></p><ul><li>Becker, D. (2016). Advanced Calibration Methods for Strapdown Airborne Gravimetry. PhD thesis, Technische Universität Darmstadt, Fachbereich Bau- und Umweltingenieurwissenschaften, Schriftenreihe der Fachrichtung Geodäsie Heft 51. ISBN 978-3-935631-40-2.</li> <li>Hirt, C. and Flury J. (2008). Astronomical-topographic levelling using high-precision astrogeodetic vertical deflections and digital terrain model data. J Geod (2008) 82:231–248, Springer-Verlag. DOI 10.1007/s00190-007-0173-x.</li> </ul>


2020 ◽  
Author(s):  
Benjamin Jacobs ◽  
Andreas Grabmaier ◽  
Michael Krautblatter

<p>The Höllentalklamm (Höllental Gorge) in Grainau is part of the main mountaineering route to the Zugspitze and with up to 2000 daily visitors a major tourist attraction in the Bavarian Alps. Following several recent rock fall events (up to 300 m³) the TU Munich collaborates with the local Alpine Club (DAV-GAP) to detect, assess and monitor rock fall hazards and to develop a benchmark safety concept for the Höllentalklamm. We combine multi-temporal terrestrial laser scanning, field mapping and the use of wireless sensor networks and evaluate the applicability of these methods for deeply incised alpine gorges.</p><p>In this study, we investigate a deeply incised and tectonically shaped alpine gorge in a well-researched mountain range (Wetterstein). In visibly accessible areas, multi-temporal terrestrial laser scanning is applied to (a) detect active rock fall areas, (b) identify hazardous objects pre-failure and (c) monitor potentially unstable parts of the rock face. Additionally, larger objects, such as a 600 m³ rock tower located directly above the track, are equipped with a redundant crackmeter system implemented in a wireless sensor network. Together with the DAV Garmisch-Partenkirchen, we are working on the development of safety procedures and the implementation of an automated early warning system. The first results show that terrestrial laser scanning is well-suited to detect post- and pre-failure rock falls above the level of detection, however, monitoring of small deformations remains a challenge. The crackmeters provide sub-millimetre deformation data of the rock tower and show generally stable conditions but a significant sensitivity towards external triggers such snow blasting in spring. Aside from that, direct rock fall hits hinder the sensor maintainace.</p><p>Here we show a benchmark rock fall hazard assessment and safety concept for Alpine gorges with high safety demands providing four years of data. This work helps to evaluate the applicability of well-established monitoring techniques in confined and inaccessible terrain (deeply incised gorges).</p>


Sign in / Sign up

Export Citation Format

Share Document