An In Situ Study of Sintering Behavior and Phase Transformation Kinetics in NiTi Using Neutron Diffraction

2015 ◽  
Vol 46 (12) ◽  
pp. 5887-5899 ◽  
Author(s):  
Gang Chen ◽  
Klaus-Dieter Liss ◽  
Peng Cao
2015 ◽  
Vol 47 (2) ◽  
pp. 661-671 ◽  
Author(s):  
Patrick Saal ◽  
Leopold Meier ◽  
Xiaohu Li ◽  
Michael Hofmann ◽  
Markus Hoelzel ◽  
...  

2013 ◽  
Vol 85 ◽  
pp. 124-133 ◽  
Author(s):  
Leopold Meier ◽  
Michael Hofmann ◽  
Patrick Saal ◽  
Wolfram Volk ◽  
Hartmut Hoffmann

JOM ◽  
2007 ◽  
Vol 59 (1) ◽  
pp. 54-58 ◽  
Author(s):  
E. Aeby-Gautier ◽  
F. Bruneseaux ◽  
J. Da Costa Teixeira ◽  
B. Appolaire ◽  
G. Geandier ◽  
...  

2020 ◽  
Vol 4 (1) ◽  
pp. 12
Author(s):  
Rafael Paiotti Marcondes Guimarães ◽  
Bruna Callegari ◽  
Fernando Warchomicka ◽  
Katherine Aristizabal ◽  
Flavio Soldera ◽  
...  

Thermal treatments are the main route to achieve improvements in mechanical properties of β-metastable titanium alloys developed for structural applications in automotive and aerospace industries. Therefore, it is of vital importance to determine phase transformation kinetics and mechanisms of nucleation and precipitation during heat treatment of these alloys. In this context, the present paper focuses on the assessment of solid-state transformations in a β-water-quenched Ti-5Al-5Mo-5V-3Cr-1Zr alloy during the early stages of ageing treatment at 500 °C. In situ tracking of transformations was performed using high-energy synchrotron X-ray diffraction. The transformation sequence β + ω → α + α”iso + β is proposed to take place during this stage. Results show that isothermal α” phase precipitates from ω and from spinodal decomposition domains of the β phase, whereas α nucleates from ω, β and also from α” with different morphologies. Isothermal α” is considered to be the regulator of transformation kinetics. Hardness measurements confirm the presence of ω, although this phase was not detected by X-ray diffraction during the in situ treatment.


Sign in / Sign up

Export Citation Format

Share Document