austempered ductile iron
Recently Published Documents


TOTAL DOCUMENTS

606
(FIVE YEARS 105)

H-INDEX

31
(FIVE YEARS 5)

2021 ◽  
Vol 2070 (1) ◽  
pp. 012201
Author(s):  
BRN Murthy ◽  
Ravichandra Rangappa

Abstract High chromium balls are recognized as better grinding media in terms of wear rates than forged steel balls, which are conventional grinding media in the milling process of iron ore. In this research work, the wear rate of high chromium balls and austempered ductile iron (ADI) balls as crushing media in a ball mill are compared. ADI are prepared by austenitizing the spheroidal graphite (SG) iron balls at 920 °C for one hour, and step austempering heat treatments were given, which includes the first step austenitizing at 300 °C for 15 min, followed by a second step austenitizing at 400 °C for 60 min. The wear rates were estimated when both balls were used separately by maintaining the same machining conditions and when the balls are mixed. The grinding wear conduct of both materials is evaluated for wear loss in wet grinding conditions. The experimental results reveal that the performance of ADI balls is better than high chromium balls when tested separately and mixed. Results also indicate that the wear rates/revolutions will decrease when the operating period increases.


Author(s):  
M. Ahmed ◽  
E. Riedel ◽  
M. Kovalko ◽  
A. Volochko ◽  
R. Bähr ◽  
...  

AbstractIn this research, ultrasonic melt treatment (UST) was used to produce a new ultrafine grade of spheroidal graphite cast iron (SG iron) and austempered ductile iron (ADI) alloys. Ultrasonic treatment was numerically simulated and evaluated based on acoustic wave streaming. The simulation results revealed that the streaming of the acoustic waves propagated as a stream jet in the molten SG iron along the centerline of the ultrasonic source (sonotrode) with a maximum speed of 0.7 m/s and gradually decreased to zero at the bottom of the mold. The metallographic analysis of the newly developed SG iron alloy showed an extremely ultrafine graphite structure. The graphite nodules’ diameter ranging between 6 and 9 µm with total nodule count ranging between 900 to more than 2000 nodules per mm2, this nodule count has never been mentioned in the literature for castings of the same diameter, i.e., 40 mm. In addition, fully ferritic matrix was observed in all UST SG irons. Further austempering heat treatments were performed to produce different austempered ductile iron (ADI) grades with different ausferrite morphologies. The dilatometry studies for the developed ADI alloys showed that the time required for the completion of the ausferrite formation in UST alloys was four times shorter than that required for statically solidified SG irons. SEM micrographs for the ADI alloys showed an extremely fine and short ausferrite structure together with small austenite blocks in the matrix. A dual-phase intercritically austempered ductile iron (IADI) alloy was also produced by applying partial austenitization heat treatment in the intercritical temperature range, where austenite + ferrite + graphite phases coexist. In dual-phase IADI alloy, it was established that introducing free ferrite in the matrix would provide additional refinement for the ausferrite.


2021 ◽  
Vol 1190 (1) ◽  
pp. 012004
Author(s):  
Garegin Zakharov ◽  
Nugzar Khidasheli ◽  
Zurab Aslamazashvili ◽  
Giorgi Gordeziani ◽  
Mikheil Chikhradze ◽  
...  

2021 ◽  
Vol 16 (2) ◽  
pp. 200
Author(s):  
Rusnaldy Rusnaldy ◽  
Yusuf Umardani ◽  
Diva Tsamara Putra ◽  
Jovian Bernard

<p><em>Austempered ductile iron (ADI) is a difficult material for machining, </em><em>even though ADI is believed to have several advantages such as strength, ductility, high toughness, fatigue resistance, good dynamic wear resistance, has a good strength-to-weight ratio, easy to manufacture  and easy to cast that causes it to be widely used in various applications.  </em><em>This study investigates the effect of milling parameters on surface rougness and chip thickness ratio on milling of ADI. To produce ADI, ductile irons  were first austenitized in furnace at 900<sup>o</sup>C for 1 hour and then they were quenched in salt bath at 375<sup>o</sup>C for 1 hour. The work material was machined with uncoated carbide tool. The tool was 20 mm in diameter. The cutting experiments were carried out in the dry mode. The feed was varied from 0.05 to 0.1 mm/tooth for cutting speed ranging from 15 m/min to 25 mm/min and depth of cut ranging from 0.1 mm to 0.3 mm. The surface roughness was measured using the Mitutoyo SJ-201, surface roughness machine. The chip thickness was measured using software Image J from the photograph produced by digital microscope endoscope. The results show that connected and loose chips were produced. Long and continuous chips were not found in this study. The effects of cutting speeds, feeds and depth of cut on surface roughness and chip thickness ratio  are reported in this paper</em><em></em></p>


Sign in / Sign up

Export Citation Format

Share Document