scholarly journals High Strain Rate Deformation Behavior and Recrystallization of Alloy 718

Author(s):  
Marie Anna Moretti ◽  
Biswajit Dalai ◽  
Paul Åkerström ◽  
Corinne Arvieu ◽  
Dimitri Jacquin ◽  
...  

AbstractTo study the deformation behavior and recrystallization of alloy 718 in annealed and aged state, compression tests were performed using Split-Hopkinson pressure bar (SHPB) at high strain rates (1000 to 3000 s−1), for temperatures between 20 $$^\circ $$ ∘ C and 1100 $$^\circ $$ ∘ C (293 K to 1373 K). Optical microscope (OM) and electron back-scatter diffraction (EBSD) technique were employed to characterize the microstructural evolution of the alloy. The stress–strain curves show that the flow stress level decreases with increasing temperature and decreasing strain rate. In addition, up to 1000 $$^\circ $$ ∘ C, the aged material presents higher strength and is more resistant to deformation than the annealed one, with a yield strength around 200 MPa higher. For both states, dynamic and meta-dynamic recrystallization occurred when the material is deformed at 1000 $$^\circ $$ ∘ C and 1100 $$^\circ $$ ∘ C, leading to a refinement of the microstructure. As necklace structures were identified, discontinuous recrystallization is considered to be the main recrystallization mechanism. The recrystallization kinetics is faster for higher temperatures, as the fraction of recrystallized grains is higher and the average recrystallized grain size is larger after deformation at 1100 $$^\circ $$ ∘ C than after deformation at 1000 $$^\circ $$ ∘ C.

2007 ◽  
Vol 7-8 ◽  
pp. 251-256 ◽  
Author(s):  
Takashi Yokoyama ◽  
Kenji Nakai

High strain-rate compressive responses of AA7075-T651 and its welds as produced by the friction stir welding (or FSW) process are investigated using the conventional split Hopkinson pressure bar. Cylindrical specimens machined along the thickness direction of the base material (AA7075-T651) and the friction stir (FS) welds are used in the static and impact compression tests. The micro-hardness tests are conducted across the centerline of a FS welded AA707-T651 joint in order to examine the microstructural change. It is shown that FSW reduces the compressive flow stress of the FS weld (weld nugget) to below that of the base material, and both the base material and the FS weld exhibit almost no strain rate effects up to nearly € ε˙ =103/s.


2008 ◽  
Vol 33-37 ◽  
pp. 1253-1258
Author(s):  
Z.N. Yin ◽  
X.S. Ma ◽  
Tie Jun Wang

Split Hopkinson Pressure Bar (SHPB) experiments are carried out to study the deformation behavior of acrylonitrile-butadiene-styrene (ABS) resin at elevated temperature and high strain rate. The temperature and strain rate considered are 293K and 343K and 8.0×102s-1, 2.7×103s-1 and 1.0×104s-1, respectively. The curves of engineering stress and strain at different temperatures and different strain rates are experimentally obtained. The effects of temperature, strain rate and the fraction of ABS on the deformation behavior of ABS resin are discussed in detail. Then, a rate and temperature dependent phenomenological constitutive law for ABS resin is developed.


Author(s):  
S. Aghayan ◽  
S. Bieler ◽  
K. Weinberg

AbstractThe usage of resin-based materials for 3D printing applications has been growing over the past decades. In this study, two types of resins, namely a MMA-based resin and an ABS-based tough resin, are subjected to compression tests on a split Hopkinson pressure bar to deduce their dynamic properties under high strain rate loading.Two Hopkinson bar setups are used, the first one is equipped with aluminum bars and the second one with PMMA bars. From the measured strain waves, elastic moduli at high strain rates are derived. Both setups lead to values of $E=3.4$ E = 3.4 –3.8 GPa at a strain rate of about 250 s−1. Numerical simulations support the experiments. Moreover, considering the waves gained from the two different bar setups, PMMA bars appear to be well-suited for testing resin samples and are therefore recommended for such applications.


2011 ◽  
Vol 284-286 ◽  
pp. 1579-1583
Author(s):  
Ping Li Mao ◽  
Zheng Liu ◽  
Chang Yi Wang ◽  
Feng Wang

The dynamic deformation behavior of an as-extruded Mg-Gd-Y magnesium alloy was studied by using Split Hopkinson Pressure Bar (SHPB) apparatus under high strain rates of 102 s-1 to 103s-1 in the present work, in the mean while the microstructure evolution after deformation were inspected by OM and SEM. The results demonstrated that the material is not sensitive to the strain rate and with increasing the strain rate the yield stress of as-extruded Mg-Gd-Y magnesium alloy has a tendency of increasing. The microstructure observation results shown that several deformation localization areas with the width of 10mm formed in the strain rates of 465s-1 and 2140s-1 along the compression axis respectively, and the grain boundaries within the deformation localization area are parallel with each other and are perpendicular to the compression axis. While increasing the strain rate to 3767s-1 the deformation seems become uniform and all the grains are compressed flat in somewhat. The deformation mechanism of as-extruded Mg-Gd-Y magnesium alloy under high strain rate at room temperature was also discussed.


2011 ◽  
Vol 82 ◽  
pp. 154-159 ◽  
Author(s):  
Anatoly M. Bragov ◽  
Ezio Cadoni ◽  
Alexandr Yu. Konstantinov ◽  
Andrey K. Lomunov

In this paper is described the mechanical characterization at high strain rate of the high strength steel usually adopted for strands. The experimental set-up used for high strain rates testing: in tension and compression was the Split Hopkinson Pressure Bar installed in the Laboratory of Dynamic Investigation of Materials in Nizhny Novgorod. The high strain rate data in tension was obtained with dog-bone shaped specimens of 3mm in diameter and 5mm of gauge length. The specimens were screwed between incident and transmitter bars. The specimens used in compression was a cylinder of 3mm in diameter and 5mm in length. The enhancement of the mechanical properties is quite limited compared the usual reinforcing steels.


2015 ◽  
Vol 816 ◽  
pp. 795-803
Author(s):  
Yan Ling Wang ◽  
Song Xiao Hui ◽  
Wen Jun Ye ◽  
Rui Liu

The mechanical properties and fracture failure behavior of the near β-type Ti-5Al-5Mo-5V-3Cr-X (X = 1Fe or 1Zr) titanium alloys were studied by Split Hopkinson Pressure Bar (SHPB) experiment under the dynamic loading conditions at a strain rate of 1.5 × 103 s-1–5.0 × 103 s-1. Results showed that the SHPB specimen fractured in the direction of maximum shearing stress at an angle of 45° with the compression axis. The fracture surface revealed the shear and tension zones with cleavage steps and parabolic dimples. Severe early unloading was observed on the Ti-5553 alloy under a strain rate of 4,900 s-1 loading condition, and the dynamic property of the Ti-55531Zr alloy was proved to be the optimal.


Sign in / Sign up

Export Citation Format

Share Document