recrystallized grain size
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 18)

H-INDEX

20
(FIVE YEARS 2)

Author(s):  
Ю.Р. Колобов ◽  
С.С. Манохин ◽  
В.И. Бетехтин ◽  
А.Г. Кадомцев ◽  
М.В. Нарыкова ◽  
...  

The effect of treatment with nanosecond laser pulses on the fatigue resistance of plate samples of recrystallized (grain size of the order of 2-3 µm) commercially pure titanium (grade VT1-0) under cyclic tensile loading is studied. The results of investigations by methods of scanning and transmission electron microscopy of the microstructure of the subsurface layer of the alloy under study after exposure to nanosecond laser irradiation and subsequent fatigue tests are presented.


Author(s):  
Marie Anna Moretti ◽  
Biswajit Dalai ◽  
Paul Åkerström ◽  
Corinne Arvieu ◽  
Dimitri Jacquin ◽  
...  

AbstractTo study the deformation behavior and recrystallization of alloy 718 in annealed and aged state, compression tests were performed using Split-Hopkinson pressure bar (SHPB) at high strain rates (1000 to 3000 s−1), for temperatures between 20 $$^\circ $$ ∘ C and 1100 $$^\circ $$ ∘ C (293 K to 1373 K). Optical microscope (OM) and electron back-scatter diffraction (EBSD) technique were employed to characterize the microstructural evolution of the alloy. The stress–strain curves show that the flow stress level decreases with increasing temperature and decreasing strain rate. In addition, up to 1000 $$^\circ $$ ∘ C, the aged material presents higher strength and is more resistant to deformation than the annealed one, with a yield strength around 200 MPa higher. For both states, dynamic and meta-dynamic recrystallization occurred when the material is deformed at 1000 $$^\circ $$ ∘ C and 1100 $$^\circ $$ ∘ C, leading to a refinement of the microstructure. As necklace structures were identified, discontinuous recrystallization is considered to be the main recrystallization mechanism. The recrystallization kinetics is faster for higher temperatures, as the fraction of recrystallized grains is higher and the average recrystallized grain size is larger after deformation at 1100 $$^\circ $$ ∘ C than after deformation at 1000 $$^\circ $$ ∘ C.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1239
Author(s):  
Liping Zhong ◽  
Bo Wang ◽  
Chundong Hu ◽  
Jieyu Zhang ◽  
Yu Yao

In this paper, in order to improve the microstructure uniformity of an ultra-high strength martensitic steel with a strength greater than 2500 MPa developed by multi-directional forging in the laboratory, a single-pass hot compression experiment with the strain rate of 0.01 to 1 s−1 and a temperature of 800 to 1150 °C was conducted. Based on the experimental data, the material parameters were determined, the constitutive model considering the influence of work hardening, the recrystallization softening on the dislocation density, and the recrystallized grain size model were established. After introducing the model into the finite element software DEFORM-3D, the thermal compression experiment was simulated, and the results were consistent with the experimental results. The rule for obtaining forging stock with a uniform and refinement microstructure was acquired by comparing the simulation and the experimental results, which are helpful to formulate an appropriate forging process.


2021 ◽  
Vol 1035 ◽  
pp. 792-800
Author(s):  
Na Min Xiao ◽  
Ai Xue Sha ◽  
Xing Wu Li

In present study a quantitative modelling framework based on phase-field method is developed to simulate the microstructure evolution during thermomechanical process, e. g. grain growth, recrystallization, solid phase transformations and their interactions. Two application cases of microstructure evolution are introduced. The first one is the dynamic recrystallization behavior during the hot deformation of stainless steel. The effect of thermo-mechanical parameters including strain, strain rate, and temperature on DRX have been investigated quantitatively. Moreover, the present simulation provided an explanation of the dependence of final recrystallized grain size on initial grain size when it is decreased to a critically small value. This modelling framework is also used to simulate the interaction between the dissolution of precipitates and grain coarsening of matrix in the nickel alloys. The simulation results show that the decreasing dissolution temperature of precipitate slow down the matrix coarsening kinetics obviously. This provides an quantitative tool to predict and control the local microstructure of nickel alloy disk. In summary, the mesoscopic modelling can be used to investigate more kinetic details of microstructure evolution and engineering optimization for thermo-mechanical process.


Author(s):  
Mo Ji ◽  
Martin Strangwood ◽  
Claire Davis

AbstractThe effects of Nb addition on the recrystallization kinetics and the recrystallized grain size distribution after cold deformation were investigated by using Fe-30Ni and Fe-30Ni-0.044 wt pct Nb steel with comparable starting grain size distributions. The samples were deformed to 0.3 strain at room temperature followed by annealing at 950 °C to 850 °C for various times; the microstructural evolution and the grain size distribution of non- and fully recrystallized samples were characterized, along with the strain-induced precipitates (SIPs) and their size and volume fraction evolution. It was found that Nb addition has little effect on recrystallized grain size distribution, whereas Nb precipitation kinetics (SIP size and number density) affects the recrystallization Avrami exponent depending on the annealing temperature. Faster precipitation coarsening rates at high temperature (950 °C to 900 °C) led to slower recrystallization kinetics but no change on Avrami exponent, despite precipitation occurring before recrystallization. Whereas a slower precipitation coarsening rate at 850 °C gave fine-sized strain-induced precipitates that were effective in reducing the recrystallization Avrami exponent after 50 pct of recrystallization. Both solute drag and precipitation pinning effects have been added onto the JMAK model to account the effect of Nb content on recrystallization Avrami exponent for samples with large grain size distributions.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1695
Author(s):  
Yongbo Jin ◽  
Chenyang Xi ◽  
Peng Xue ◽  
Chunxiang Zhang ◽  
Sirui Wang ◽  
...  

This study investigates three processes of multidirectional forging (MDF), namely, closed MDF (CMDF), single-open MDF, and double-open MDF, by using a constitutive equation and a dynamic recrystallization model of hot deformation of the GH4169 superalloy. The microstructure evolution of the three processes is simulated and compared. Among the three processes, the double-open MDF obtains the highest recrystallization degree, followed by the CMDF and the single-open MDF under the same reduction. The recrystallization degree of CMDF reaches 99.5% at 1000 °C and 9 passes, and the average recrystallized grain size is small, which is approximately 8.1 μm. The double-open MDF can obtain a fine grain size of forgings at 9 passes and 1000 °C, and it is easy to obtain forgings with the single-open MDF with uniform performance. The temperature is 850 °C–1000 °C, the compression rate is 0.15–0.2, and the pass is 5–9, which are the suitable parameter selection ranges for the CMDF. The temperature is 950 °C–1000 °C, the compression rate is 0.1–0.2, and the pass is 7–9, which are the suitable parameter selection ranges for single-open MDF. The temperature is 850 °C–1000 °C, the compression rate is 0.1–0.2, and the pass is 6–9, which are the suitable parameter selection ranges for the double-open MDF.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 589 ◽  
Author(s):  
Plavka Skakun ◽  
Dragan Rajnovic ◽  
Petar Janjatovic ◽  
Sebastian Balos ◽  
Andrei Shishkin ◽  
...  

In this study, an experimental, metallographic method for determining strain distribution in a cold extruded aluminum gear-like element, based on the dependence of recrystallized grain size on prior deformation, was devised in order to overcome design problems in manufacturing of complex parts where critical values of strain and stress could cause a fracture. The method was applied on a 99.5% aluminum bar subjected to cold, radial extrusion, in order to produce complex gear-like element. To reveal the strain and stress distribution in specimens, the calibration and flow curves were first obtained by uniaxial compression (Rastegaev test). Afterwards, the grain size in different parts of the gear section was examined, the strain and stress distributions were calculated, and the results were confirmed by microhardness measurements. It was found that grain size, strain, stress, and microhardness considerably differed throughout the cross-section of the gear. The coarsest grain, and thus the lowest strain zone, was obtained in the central part of the tooth and in the zone between teeth. Conversely, the finest grains appeared in the highest strain zone at the specimen surface, particularly in the root of the teeth. Furthermore, results were supported by microhardness measurements, i.e., microhardness corresponded to grain size and strain hardening. Finally, the real view of material flow in the complex extruded part was successfully obtained by the metallographic method.


2020 ◽  
Author(s):  
Leif Tokle ◽  
Greg Hirth ◽  
Luiz Morales ◽  
Holger Stunitz

<p>To investigate the role of strong and weak secondary phases on the recrystallized grain size of quartz, we performed grain size analyses on quenched samples from general shear experiments on quartz-garnet and quartz-muscovite mixtures. Six general shear experiments were conducted in the Griggs apparatus; three with mixtures of quartz-garnet (vol.% garnet 5, 15, 30) and three with mixtures of quartz-muscovite (vol.% muscovite 5, 10, 25). The starting powders for both set of experiments were synthetic mixtures of quartz-muscovite or quartz-garnet with 0.1 wt.% water added. The quartz-garnet experiments were conducted at 900°C, a pressure of 1.2 GPa, and a shear strain rate of ~10<sup>-5</sup> s<sup>-1</sup>, while the quartz-muscovite experiments were conducted at 800°C, a pressure of 1.5 GPa, and a shear strain rate of ~10<sup>-5</sup> s<sup>-1</sup>. At these deformation conditions quartz is stronger than muscovite and weaker than garnet. We observed that the bulk strength of the aggregate decreases with a greater volume percent of muscovite and increases with a greater volume percent of garnet. Garnet at these conditions does not deform plastically. The presence of secondary phases within the deforming aggregate causes stress concentrations and partitioning of strain rate between the different phases relative to the measured bulk stress and strain rate. The degree of partitioning is primarily related to the rheology and volume percent of the phases. Due to the piezometric relationship between recrystallized grain size and stress, we can use the quartz recrystallized grain size to determine the local stress of quartz in the experiments and compare it to the measured bulk stress. The results from these analyses will provide new insight into the effect of strain partitioning in general and of strong and weak secondary phases on quartz rheology.</p>


Sign in / Sign up

Export Citation Format

Share Document