scholarly journals Evolution of the Non-metallic Inclusions Influenced by Slag-Metal Reactions in Ti-Containing Ferritic Stainless Steel

Author(s):  
Yong Wang ◽  
Jin-Hyung Cho ◽  
Tae-Su Jeong ◽  
Andrey Karasev ◽  
Wangzhong Mu ◽  
...  

AbstractLaboratory experiment and thermodynamic calculation for the Ti-containing 24 mass pct Cr ferritic stainless steel with a CaO-SiO2-Al2O3-MgO system slag were performed to investigate the effect of slag addition on the inclusion characteristics in molten steel. The morphology, composition, and size evolution of inclusions in steel samples were analyzed in three-dimensional by the electrolytic extraction method and in two-dimensional by the automatic analysis method. The results showed that the Ti content significantly decreased after the slag addition. However, the change of the Si content showed an opposite tendency. The decrease of the Ti content in steel was due to the reduction of SiO2 and Al2O3 in the slag by dissolved Ti in steel. An increase of the TiO2 content in the slag can decrease the Ti loss in steel based on the slag-steel kinetic analysis. The total O content in the steel melt decreased from 62 to 26 ppm, and the steel cleanliness was improved, since the number density of inclusions decreased after the slag refining. The results of a kinetic analysis showed that the rate-determining step of the oxidation of Ti in the steel and the reduction of SiO2 in the slag were the mass transfer on the slag side. In addition, high Ti2O3-containing inclusions were found to be transformed to Cr2O3-Ti2O3-Al2O3 and Cr2O3-Ti2O3-SiO2 system inclusions after the slag addition. The Al2O3 contents in inclusions increased while the Ti2O3 contents decreased with time. However, there were some amount of high melting point inclusions with high Al2O3 content, which were not what we expected. When plotted on logarcxithmic scales, the mole ratio $$X_{{{\text{Al}}_{2} {\text{O}}_{3} }} /(X_{{{\text{Ti}}_2 {\text{O}}_{3} }} \cdot X_{{{\text{Cr}}_{2} {\text{O}}_{3} }} )$$ X Al 2 O 3 / ( X Ti 2 O 3 · X Cr 2 O 3 ) values of the inclusions were expressed as a linear function of the $$a_{\text{Al}}^{2} /(a_{Ti}^{2} \cdot a_{\text{Cr}}^{2} \cdot a_{\text{O}}^{3} )$$ a Al 2 / ( a Ti 2 · a Cr 2 · a O 3 ) values of the steel melts with a slope of unity, which was theoretically expected.

2013 ◽  
Vol 61 (7) ◽  
pp. 2649-2661 ◽  
Author(s):  
Hoon-Hwe Cho ◽  
Sung-Tae Hong ◽  
Jae-Hun Roh ◽  
Hyun-Sik Choi ◽  
Suk Hoon Kang ◽  
...  

2011 ◽  
Vol 284-286 ◽  
pp. 1306-1310
Author(s):  
Cai Jun Zhang ◽  
Yan Lei Bi ◽  
Hong Jie Zhang ◽  
Jie Yang

According to actual circumstance of Tang Shan ferritic stainless Steel Company, making use of some scene technology parameter and referring a lot of document data, the three-dimensional mathematical model which coupled the molten steel flow with heat transfer is established by adopting the simulation software FLUENT. The result shows: The surface flow velocity and turbulent kinetic energy in liquid surface centerline is appear symmetrical around the two side in ideal condition without the nozzle clogging, but the nozzle clogging show asymmetric distribution, different place and size clogging appear different flow field and temperature. The nozzle clogging of surface temperature and mold lower temperature are higher than the sides without the nozzle clogging. Nozzle clogging is disadvantage of the removal inclusion.


Author(s):  
Yong Wang ◽  
Min Kyo Oh ◽  
Tae Sung Kim ◽  
Andrey Karasev ◽  
Wangzhong Mu ◽  
...  

AbstractThe influence of commercial low carbon ferrochromium (LCFeCr) additions on the inclusion characteristics in Ti-containing ferritic stainless steel was studied by laboratory experiment in this work. The inclusions in steel before and after the FeCr alloy additions were investigated through systematic samplings and microscopy investigations of the liquid steel. Different types of inclusions in the FeCr alloy and steel were detected and the evolution of the inclusion characteristics (e.g., composition, size, morphology, and number density) were investigated. The results showed that the Ti content decreased after the FeCr alloy additions. Furthermore, MnCr2O4 spinel inclusions originating from the FeCr alloys transformed into Ti2O3–Cr2O3-based liquid inclusions and Ti2O3-rich solid inclusions. They were formed due to the reactions between MnCr2O4 and TiN inclusions or dissolved Ti in molten steel. The ratio of Ti/Al in the steel melt has a direct influence on the evolution of inclusions from thermodynamic calculations. The addition of FeCr alloys caused an increased number density of these Ti2O3-containing inclusions and TiN inclusions up to 8 minutes from the time of alloy addition. The increased Cr content from 16 to 24 mass pct due to the FeCr additions can increase the critical N content to form TiN inclusions at a specific Ti content. Overall, this study has contributed to the understanding the behavior of inclusions from LCFeCr alloy during the alloying process in Ti-containing steel.


2010 ◽  
Vol 48 (04) ◽  
pp. 297-304 ◽  
Author(s):  
Jong Pan Kong ◽  
Tae Jun Park ◽  
Hye Sung Na ◽  
Jeong Kil Kim ◽  
Sang Ho Uhm ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document