nozzle clogging
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 35)

H-INDEX

11
(FIVE YEARS 2)

Author(s):  
A. Ludwig ◽  
C. M. G. Rodrigues ◽  
Z. Zhang ◽  
H. Zhang ◽  
E. Karimi-Sibaki ◽  
...  

AbstractDuring the last decade, the chair for ‘Simulation and Modelling of Metallurgical Processes’ (SMMP) has worked on different metallurgical processes with the highlights of the following five industrial relevant topics: (i) modelling the as-cast structures of large steel castings; (ii) exploring the formation mechanisms of macrosegregation; (iii) describing magnetohydrodynamic and electrochemical phenomena in remelting processes, (iv) understanding how solidification and flow can be influenced by magnetohydrodynamics during steel continuous casting; and (v) describing nozzle clogging in steelmaking processes. In this contribution, the main achievements from the group on the above five topics are briefly described.


Author(s):  
Hao Zhang ◽  
Lixing Zhang ◽  
Haoqi Zhang ◽  
Jiang Wu ◽  
Xizhong An ◽  
...  

AbstractA coupled multiphase model based on computational fluid dynamics (CFD) and discrete element method (DEM) is developed to numerically investigate the extrusion-based 3D printing process of discontinuous carbon fibre-reinforced polymer composites. Short carbon fibres are modelled as rigid bodies by clumping discrete spheres in DEM, while polymer matrix is treated as an incompressible Newtonian fluid in CFD. A fluid-particle interaction model is adopted to couple DEM and CFD and represent the dynamic fibre/matrix interaction. Collisions between fibres are considered naturally in DEM by using the Hertz-Mindlin contact law. The coupled CFD-DEM is validated, both qualitatively and quantitatively, against X-ray microtomography (μCT) experimental results for the T300/PA6 composite. Parametric study on various fibre lengths, fibre volume fraction and resin viscosity using the CFD-DEM model shows that the nozzle clogging tends to occur when the fibre length and/or the fibre volume fraction are increased. Use of a polymer matrix with a lower viscosity can be effective to eliminate the clogging issue when printing composites with relatively short fibres. The fibre length is dominating when long fibres are used and the clogging is largely independent on the viscosity of the polymer matrix. Finally, a potential solution of using a cone sleeve insert located above the shrinking region to address the nozzle clogging issue is proposed and numerically assessed.


2021 ◽  
Vol 11 (14) ◽  
pp. 6424
Author(s):  
Danielle Jaye S. Agron ◽  
Jae-Min Lee ◽  
Dong-Seong Kim

A preventive maintenance embedded for the fused deposition modeling (FDM) printing technique is proposed. A monitoring and control integrated system is developed to reduce the risk of having thermal degradation on the fabricated products and prevent printing failure; nozzle clogging. As for the monitoring program, the proposed temporal neural network with a two-stage sliding window strategy (TCN-TS-SW) is utilized to accurately provide the predicted thermal values of the nozzle tip. These estimated thermal values are utilized to be the stimulus of the control system that performs countermeasures to prevent the anomaly that is bound to happen. The performance of the proposed TCN-TS-SW is presented in three case studies. The first scenario is when the proposed system outperforms the other existing machine learning algorithms namely multi-look back LSTM, GRU, LSTM, and the generic TCN architecture in terms of obtaining the highest training accuracy and lowest training loss. TCN-TS-SW also outperformed the mentioned algorithms in terms of prediction accuracy measured by the performance metrics like RMSE, MAE, and R2 scores. In the second case, the effect of varying the window length and the changing length of the forecasting horizon. This experiment reveals the optimized parameters for the network to produce an accurate nozzle thermal estimation.


2021 ◽  
Vol 1037 ◽  
pp. 55-64
Author(s):  
Durwesh Jhodkar ◽  
Ankit Nayak ◽  
Kapil Gupta

Fused deposition modeling (FDM) or 3D printing is one of the promising techniques widely preferred to fabricate complex and customized 3D objects or prototypes for various engineering and non-engineering applications. With the growing demands of customized prototypes, researchers are facing a major challenge for maintaining effective part quality with adequate surface finish and strength; and minimizing the cost, defects, and waste in 3D printing. Condition monitoring is one of the strategies to achieve the aforementioned. It has a huge potential to minimize defects and print failures in 3D printing. The main objective of this research work is to perform online condition monitoring of the nozzle status with the help of vibration signals in fused deposition modelling process. The effect of nozzle clogging on the consistency of material deposition and its effect on surface finish has experimentally investigated in this work. The set of experiments were performed by artificially creating the condition of nozzle clogging to investigate the effect of nozzle clogging on print quality (surface finish). Nozzle clogging condition was created by increasing the feed rate of polylactic acid (PLA) filament at a low heat supply rate to the nozzle by modifying the commands of 3D printer. The layer thickness was varied throughout the experiments to observe the nozzle clogging. The vibrations signals were acquired by using an accelerometer that was mounted near the nozzle. The data acquisition frequency of the accelerometer was 12500Hz. Further, the acquired vibration signals were analyzed using the Fast Fourier transformation (FFT) signal processing technique. Results revealed that nozzle clogging severely affects surface quality and geometrical accuracy of the fabricated 3D part due to nozzle vibration and non-uniform material deposition. Moreover, nozzle clogging and its relevant consequences like non uniform material deposition can be monitored using vibration signal-based condition monitoring during part fabrication and based upon that appropriate measures can be taken for defects and waste elimination.


2021 ◽  
Author(s):  
Hao Zhang ◽  
Lixing Zhang ◽  
Haoqi Zhang ◽  
Jiang Wu ◽  
Xizhong An ◽  
...  

Abstract A coupled multiphase model based on computational fluid dynamics (CFD) and discrete element method (DEM) is developed to numerically investigate the extrusion-based 3D printing process of discontinuous carbon fibre reinforced polymer composites. Short carbon fibres are modelled as rigid bodies by clumping discrete spheres in DEM, while polymer matrix is treated as an incompressible Newtonian fluid in CFD. A fluid-particle interaction model is adopted to couple DEM and CFD and represent the dynamic fibre/matrix interaction. Collisions between fibres are considered naturally in DEM by using the Hertz-Mindlin contact law. The coupled CFD-DEM is validated, both qualitatively and quantitatively, against X-ray microtomography (µCT) experimental results for the T300/PA6 composite. Parametric study on various fibre lengths, fibre volume fraction and resin viscosity using the CFD-DEM model shows that the nozzle clogging tends to occur when the fibre length and/or the fibre volume fraction are increased. Use of a polymer matrix with a lower viscosity can be effective to eliminate the clogging issue when printing composites with relatively short fibres. The fibre length is dominating when long fibres are used and the clogging is largely independent on the viscosity of the polymer matrix. Finally, a potential solution of using a cone sleeve insert located above the shrinking region to address the nozzle clogging issue is proposed and numerically assessed.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 662
Author(s):  
Chengjian Hua ◽  
Min Wang ◽  
Dieter Senk ◽  
Hao Wang ◽  
Qi Zhang ◽  
...  

Two submerged entry nozzles (SENs) used for casting 1300 tons and 260 tons of Al-killed steel were dissected. Several parameters including block rate, nozzle clog angle, port width, and port height of the clogged nozzle were introduced to describe the geometry of clogs in the SENs based on the dissection; furthermore, a geometry model was established to describe the characteristics of the nozzle clogging of the SENs. A large-eddy simulation (LES) coupled with the volume of fraction (VOF) method was adopted to simulate the steel–slag interface’s interaction behavior. The vortex visualization and rotation magnitude were characterized by the Liutex method. Quantitatively, the influence of nozzle clogging resulted in block rates of 0% to 45.9% on the flow and vortex distribution in the mold, and the characteristics of the steel–slag interface fluctuation were well verified in the industrial experiment.


2021 ◽  
Vol 21 (3) ◽  
pp. 1735-1741
Author(s):  
E. Cheng ◽  
Xue Yang ◽  
Zhifu Yin ◽  
Wei Hu ◽  
Lu Li ◽  
...  

Electrohydrodynamic (EHD) jet printing enables rapid prototyping high-resolution and low-cost lines with width of micrometer or even nanometer. However, EHD printing always suffers from nozzle clogging when the nozzle inner-diameter decrease to micro-scale. Thus fabrication of low cost nozzles becomes significantly important. In this work, 50 μm wide and 12.5 μm deep PMMA (Polymethyl Methacrylate) nozzles were fabricated without using traditional expensive glass capillary pulling approach. To replicate PMMA nozzle with high precision, the embossing condition was optimized according to replication precision, the deformation rate, and maximum stress. To nearly fully bond PMMA nozzle with intact PMMA microchannel, the bonding condition was optimized according the bonding rate and dimension loss of PMMA microchannel. The availability of the fabricated PMMA nozzle was finally verified by EHD printing experiments.


Author(s):  
María-Guadalupe González Solórzano ◽  
Rodolfo Morales-Dávila ◽  
Jafeth Rodríguez Ávila ◽  
Carlos Rodrigo Muñiz-Valdés ◽  
Alfonso Nájera Bastida

Nozzle clogging in continuous casting of steel originates by the adherence of alumina particles and other oxides, precipitated during the liquid steel deoxidation, on the refractory material’s surface. Hence, these particles’ nucleation and growth rates in supersaturated melts are analyzed considering, specifically, the role of the interfacial tensions between alumina, silica, and other oxides and the liquid metal. Weak steel deoxidizers like silicon do not need high supersaturations favoring high nucleation rates, giving particles’ narrow size distributions thanks to fast diffusion and Ostwald-ripening coagulation. Strong deoxidizers, like aluminum, need high supersaturation levels leading to broad size distributions. Besides, the morphology of these particles depends on the nucleation and growth mechanisms. The adhesion forces among the deoxidation particles, forming clusters, depending on the morphology and the oxide’s chemistry. The stability of the nozzle’s clog, adhered to the nozzle’s wall, depends on the interface tensions between the melt and the nozzle’s refractory surface and between the melt and the inclusion. The results obtained here help set up basic recommendations in steel refining and materials specifications of casting nozzles.


2021 ◽  
Author(s):  
Marina Gomes da Silva Oliveira ◽  
Rosana Harumi Serikawa ◽  
Fábio Maximiano Andrade da Silva ◽  
Odair Aparecido Fernandes

AbstractChysodeixis includens and Helicoverpa armigera can negatively impact soybean yield due to defoliation and direct injury on the pods, respectively. Insecticides, such as indoxacarb, are still an important controlling tool to manage these insects. To support Integrated Pest Management (IPM) and Insect Resistance Management (IRM) as well as to reduce product decantation during storage and nozzle clogging in field application, a new indoxacarb formulation (emulsifiable concentrate - EC) was developed to replace the suspension concentrate formulation (SC). The objective of this study was to evaluate the susceptibility and compare the residual effects of two indoxacarb formulations on C. includens and H. armigera on soybean. A dose-response curve and the residual effect from in-field application were obtained using a laboratory strain of both insect pests. Soybean leaflets were collected and dipped into aqueous indoxacarb solutions. The evaluations were performed 96 h after the infestation to calculate the insect mortality percentage and foliar damage. Also, plants were sprayed in the field and leaflets from mid and upper regions of the plants were collected and used to feed third-instar larvae of both species. Results demonstrated that C. includens and H. armigera are similary sensitive to indoxacarb. The residual activity was up to 1 h after application for H. armigera and up to 3 days for C. includens. No difference was observed on this activity between mid and upper regions of the plant. Overall, the enhanced EC formulation is as effective as the SC formulation for the control of both species on soybean.


Sign in / Sign up

Export Citation Format

Share Document