Influence of substrate on high-temperature behavior of copper film studied in situ by electron backscatter diffraction

2005 ◽  
Vol 34 (12) ◽  
pp. 1509-1520 ◽  
Author(s):  
Kabirkumar J. Mirpuri ◽  
Jerzy A. Szpunar
2004 ◽  
Vol 76 (1-4) ◽  
pp. 160-166 ◽  
Author(s):  
K. Mirpuri ◽  
H. Wendrock ◽  
S. Menzel ◽  
K. Wetzig ◽  
J. Szpunar

2007 ◽  
Vol 561-565 ◽  
pp. 2087-2090 ◽  
Author(s):  
Ya Ming Huang ◽  
Qiang Fu ◽  
Chun Xu Pan

Electron backscatter diffraction (EBSD) has been developed as a novel technique for characterizing crystallographic textures in recent years. The present paper proposes an “in-situ-tracking” approach using SEM and EBSD to examining the microstructural development and grain boundary variation of stainless steel during elevated 1200 °C service. The results revealed that in addition to the coarsened grains the fraction of low angle grain boundaries (LABG) became increased and flattened obviously during service. Comparing to the regular high temperature service (below 900 °C), the present “recovery and recrystallization” process was accelerated due to dislocation fastened movement and intensive interaction. However, the grain growth mechanism still meet the well-accepted dislocation model of subgrain combination.


2008 ◽  
Vol 2008 ◽  
pp. 1-7 ◽  
Author(s):  
I. Lischewski ◽  
D. M. Kirch ◽  
A. Ziemons ◽  
G. Gottstein

A newly developed laser powered heating stage for commercial SEMs in combination with automated established electron backscatter diffraction (EBSD) data acquisition is presented. This novel experimental setup can be used to achieve more information about microstructure and orientation changes during grain growth, recrystallization, recovery, and phase transformations. First results on the α−γ−α phase transformation in steel within 886∘C–900∘C are presented.


Microscopy ◽  
2020 ◽  
Author(s):  
Kaneaki Tsuzazki ◽  
Motomichi Koyama ◽  
Ryosuke Sasaki ◽  
Keiichiro Nakafuji ◽  
Kazushi Oie ◽  
...  

Abstract Microstructural changes during the martensitic transformation from face-centred cubic (FCC) to body-centred cubic (BCC) in an Fe-31Ni alloy were observed by scanning electron microscopy (SEM) with a newly developed Peltier stage available at temperatures to  −75°C. Electron channelling contrast imaging (ECCI) was utilized for the in situ observation during cooling. Electron backscatter diffraction analysis at ambient temperature (20°C) after the transformation was performed for the crystallographic characterization. A uniform dislocation slip in the FCC matrix associated with the transformation was detected at −57°C. Gradual growth of a BCC martensite was recognized upon cooling from −57°C to −63°C.


2018 ◽  
Vol 103 (11) ◽  
pp. 1741-1748 ◽  
Author(s):  
Rossella Arletti ◽  
Riccardo Fantini ◽  
Carlotta Giacobbe ◽  
Reto Gieré ◽  
Giovanna Vezzalini ◽  
...  

2007 ◽  
Vol 13 (S02) ◽  
Author(s):  
D Prior ◽  
M Bestmann ◽  
S Piazolo ◽  
NC Seaton ◽  
DJ Tatham ◽  
...  

2011 ◽  
Vol 11 (10) ◽  
pp. 4660-4666 ◽  
Author(s):  
Wolfgang Wisniewski ◽  
Carlos André Baptista ◽  
Matthias Müller ◽  
Günter Völksch ◽  
Christian Rüssel

Sign in / Sign up

Export Citation Format

Share Document