Statistical Modeling of Strain-Hardening Exponent and Grain Size of Nb-Microalloyed Steels Using a Two-Level Factorial Design of Experiment

2013 ◽  
Vol 22 (11) ◽  
pp. 3337-3347 ◽  
Author(s):  
Nasrollah Bani Mostafa Arab ◽  
Mohsen Ayaz ◽  
Daavood Mirahmadi Khaki
1975 ◽  
Vol 97 (4) ◽  
pp. 382-383 ◽  
Author(s):  
Amiya K. Chakrabarti ◽  
James A. Roberson ◽  
William R. Kerr

The strain-hardening exponent (n) is considered to be numerically equal to the uniform plastic strain for materials which exhibit a power low true stress true strain relation. In Ti-6Al-2Sn-4Zr-2Mo alloy a considerable deviation between the uniform plastic strain and the strain hardening exponent has been observed irrespective of the variations in microstructures and grain size. The present investigation indicates that a power law true stress true strain relation of the type σ = Kεn may not be valid for this material.


2004 ◽  
Vol 467-470 ◽  
pp. 223-228
Author(s):  
K.M. Banks

Various microstructure models for Nb-bearing steels were tested under industrial strip rolling conditions to establish a relationship between grain size and toughness in Ti-Nb-V microalloyed steels. For similar Nb contents, microstructure models for Nb steels were found to adequately describe recrystallisation kinetics in more complex Ti-Nb-V steels. For thick-walled linepipe (11.6mm), a minimum of 0.04%Nb is required to achieve adequate toughness. Retained strain was the dominant processing parameter factor affecting ferrite grain size. The predicted minimum amount of retained strain after the last pass required for sufficient grain refinement concurred with laboratory simulation results. For the rolling schedules investigated, metadynamic recrystallisation was predicted to occur during roughing, whilst static recrystallisation was predominant during finishing.


1998 ◽  
Vol 38 (9) ◽  
pp. 1469-1474 ◽  
Author(s):  
S. Nagarjuna ◽  
M. Srinivas ◽  
K. Balasubramanian ◽  
D.S. Sarma

Sign in / Sign up

Export Citation Format

Share Document