true stress
Recently Published Documents


TOTAL DOCUMENTS

302
(FIVE YEARS 65)

H-INDEX

24
(FIVE YEARS 2)

Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 189
Author(s):  
Bin Yang ◽  
Hongjian Wang ◽  
Kunkun Fu ◽  
Chonglei Wang

In the present work, an explicit finite element (FE) model was developed for predicting cutting forces and chip morphologies of polymers from the true stress–strain curve. A dual fracture process was used to simulate the cutting chip formation, incorporating both the shear damage failure criterion and the yield failure criterion, and considering the strain rate effect based on the Johnson–Cook formulation. The frictional behaviour between the cutting tool and specimen was defined by Coulomb’s law. Further, the estimated cutting forces and chip thicknesses at different nominal cutting depths were utilized to determine the fracture toughness of the polymer, using an existing mechanics method. It was found that the fracture toughness, cutting forces, and chip morphologies predicted by the FE model were consistent with the experimental results, which proved that the present FE model could effectively reflect the cutting process. In addition, a parametrical analysis was performed to investigate the effects of cutting depth, rake angle, and friction coefficient on the cutting force and chip formation, which found that, among these parameters, the friction coefficient had the greatest effect on cutting force.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ting Yang ◽  
Zhuohua Li ◽  
Jinhui Wang ◽  
Peipeng Jin

The microstructure evolution and deformation mechanism of the as-extruded-annealed Mg-4Li-1Al-0.5Y alloy (denoted as LAY410) were investigated during the hot tensile deformation at the temperatures between 150°C and 300°C with strains from 8 × 10−5 s−1 to 1.6 × 10−3 s−1. The results show that when the strain rate decreases and/or the deformation temperature increases, the peak stress of the alloy gradually decreases, and the elongations to fracture gradually increases. The true stress–strain curves show typical dynamic recrystallization (DRX) softening characteristics. It is observed that the microstructure in the magnesium (Mg) alloy deformed at 150°C is mainly composed of the deformed grains and a few recrystallized grains. The microstructures in the Mg alloy deformed at 200°C consisted of substructures and a slightly increasing number of dynamic recrystallized grains. When the deformation temperature reaches 250°C, the number of recrystallized grains increases significantly, and the microstructures are dominated by recrystallized grains. Moreover, through theoretical calculation and result analysis, the activation energy was about 99.3 kJ/mol, and the hot tensile deformation mechanism was the alternate coordinated deformation mechanism among grain boundary slip (GBS), intragranular slip, and DRX.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2967
Author(s):  
John Sweeney ◽  
Paul Spencer ◽  
Glen Thompson ◽  
David Barker ◽  
Phil Coates

Sheet specimens of a PLLA-based polymer have been extended at a temperature near to the glass transition in both uniaxial and planar tension, with stress relaxation observed for some time after reaching the final strain. Both axial and transverse stresses were recorded in the planar experiments. In all cases during loading, yielding at small strain was followed by a drop in true stress and then strain hardening. This was followed by stress relaxation at constant strain, during which stress dropped to reach an effectively constant level. Stresses were modelled as steady state and transient components. Steady-state components were identified with the long-term stress in stress relaxation and associated with an elastic component of the model. Transient stresses were modelled using Eyring mechanisms. The greater part of the stress during strain hardening was associated with dissipative Eyring processes. The model was successful in predicting stresses in both uniaxial and planar extension over a limited range of strain rate.


2021 ◽  
Author(s):  
Luke Hoover ◽  
Dino Celli ◽  
Jeremy Seidt ◽  
Robert Lowe ◽  
Amos Gilat ◽  
...  

2021 ◽  
Vol 1035 ◽  
pp. 189-197
Author(s):  
Bao Ying Li ◽  
Bao Hong Zhu

The hot deformation behavior of spray-formed AlSn20Cu alloy during hot compression deformation was studied, and the constitutive equation of AlSn20Cu alloy was established. The samples of spray-formed AlSn20Cu alloy were compressed on Gleeble-3500 thermal simulation test machine. The error of the true stress caused by adiabatic heating effect in the experiment was corrected. The constitutive equation of spray-formed AlSn20Cu alloy could be represented by Zener-Hollomon parameter in a hyperbolic sine function. The results showed that the deformation temperatures and strain rates had a notable effect on the true stress of the alloy. At the identical deformation temperature, the true stress increased with the increase of strain rate. When the strain rate was constant, the stress decreased with the increase of deformation temperature. After hot compression deformation, the tin phase was elongated along the direction perpendicular to the compression axis with short strips and blocks. With the increase of deformation temperature and the decrease of strain rate, Sn phase distribution became more homogeneous.


2021 ◽  
pp. 1-18

Abstract Product design requires an understanding of the mechanical properties of materials, much of which is based on tensile testing. This chapter describes how tensile tests are conducted and how to extract useful information from measurement data. It begins with a review of the different types of test equipment used and how they compare in terms of loading force, displacement rate, accuracy, and allowable sample sizes. It then discusses the various ways tensile measurements are plotted and presents examples of each method. It examines a typical load-displacement curve as well as engineering and true stress-strain curves, calling attention to certain points and features and what they reveal about the test sample and, in some cases, the cause of the behavior observed. It explains, for example, why some materials exhibit discontinuous yielding while others do not, and in such cases, how to determine when yielding begins. It also explains how to determine other properties via tensile tests, including ductility, toughness, and modulus of resilience.


2021 ◽  
Author(s):  
Biao Hu ◽  
Gaoshen Cai ◽  
Jubo Fu ◽  
Yanxi Xin ◽  
Kangning Liu ◽  
...  

Abstract In order to investigate the formability of the granular medium forming (GMF), based on the Mohr-Coulomb constitutive model with the tri-axial compression test of granular medium and the true stress-strain curves of TA1 titanium alloy from uniaxial tensile tests, the numerical simulation of TA1 titanium alloy sheet deep drawing with finite element method was performed, and the deep drawing tests were also carried out. Simulation analysis and test results show that the GMF process is suitable for titanium alloy sheets, and can effectively improve the uniformity of the wall thickness of the formed parts, reduce the tendency of wrinkles and improve the forming quality.


Sign in / Sign up

Export Citation Format

Share Document