Experimental Investigation and Constitutive Description of Railway Wheel/Rail Steels under Medium-Strain-Rate Tensile Loading

2020 ◽  
Vol 29 (3) ◽  
pp. 2015-2025 ◽  
Author(s):  
Xingya Su ◽  
Lun Zhou ◽  
Lin Jing ◽  
Huanran Wang
2007 ◽  
Vol 17 (1) ◽  
pp. 126-132 ◽  
Author(s):  
Wen-jiao GAO ◽  
Ren-liang SHAN ◽  
Gong-cheng WANG ◽  
Rui-qiang CHENG

2011 ◽  
Vol 172-174 ◽  
pp. 37-42 ◽  
Author(s):  
Yong Jun He ◽  
Qing Ping Sun

High damping capacity is one of the prominent properties of NiTi shape memory alloy (SMA), having applications in many engineering devices to reduce unwanted vibrations. Recent experiments demonstrated that, the hysteresis loop of the stress-strain curve of a NiTi strip/wire under a tensile loading-unloading cycle changed non-monotonically with the loading rate, i.e., a maximum damping capacity was obtained at an intermediate strain rate (ε.critical). This rate dependence is due to the coupling between the temperature dependence of material’s transformation stresses, latent-heat release/absorption in the forward/reverse phase transition and the associated heat exchange between the specimen and the environment. In this paper, a simple analytical model was developed to quantify these thermo-mechanical coupling effects on the damping capacity of the NiTi strips/wires under the tensile loading-unloading cycle. We found that, besides the material thermal/mechanical properties and specimen geometry, environmental condition also affects the damping capacity; and the critical strain rate ε.criticalfor achieving a maximum damping capacity can be changed by varying the environmental condition. The theoretical predictions agree quantitatively with the experiments.


2011 ◽  
Vol 243-249 ◽  
pp. 5923-5929
Author(s):  
Lu Guang Liu ◽  
Zhuo Cheng Ou ◽  
Zhuo Ping Duan ◽  
Yan Liu ◽  
Feng Lei Huang

Crack propagation behaviors at a mortar-aggregate interface in concrete under dynamic tensile loading conditions are investigated numerically. It is found, for a certain interfacial strength and aggregate size, that the crack can penetrate through the interface under an external load with its loading-rate higher than a threshold value. Moreover, for the crack penetration, the smaller the radius of an aggregate, the higher the loading-rate is needed. Therefore, concrete failure energy increase considerably with the loading-rate (or the strain-rate). Such a strain-rate effect on the strength of concrete is in agreement with previous experimental results.


Sign in / Sign up

Export Citation Format

Share Document