Investigation of Single-Particle Erosion Behavior of Electroless Ni-P-Ti Composite Coatings

2020 ◽  
Vol 29 (3) ◽  
pp. 1671-1685 ◽  
Author(s):  
Zhi Li ◽  
Zoheir Farhat ◽  
Md. Aminul Islam
2019 ◽  
Vol 28 (3) ◽  
pp. 1532-1543
Author(s):  
Sima A. Alidokht ◽  
Jacques Lengaigne ◽  
Jolanta E. Klemberg-Sapieha ◽  
Steve Yue ◽  
Richard R. Chromik

Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 617
Author(s):  
Nicole Cameron ◽  
Zoheir Farhat

Bulk NiTi is used to make parts, such as couplings and bearings, that can be found in many industries such as the automotive, aerospace and medical sectors. Forming and machining bulk superelastic NiTi is a very difficult and costly process; however, applying NiTi as a surface coating will provide an alternate manufacturing method that will minimize machining processes. The objective of this study is to produce a superelastic NiTi-based surface coating that exhibits denting, impact and wear resistance. Superelastic NiTi has been successfully produced through vacuum deposition processes, despite this, there is a lack of a full and comprehensive study on the formation of the NiTi phase during coating development. In this study, the NiTi phase is fabricated through the annealing of sputtered deposited Ti and Ni layers in a coating. To confirm the presence of the intermetallic phases, X-ray diffraction (XRD) and energy dispersive spectrometry (EDS) analysis were performed. The erosion behavior of the coating is evaluated through single particle erosion testing, which resulted in the coatings that contained the NiTi precipitates to exhibit the best damage resistance compared to the other nanolaminates. This indicates that the superelastic NiTi phase increases the resistance to impacting particles. Microstructural evolution and NiTi formation during annealing is discussed and related to the observed damage resistance of the coatings.


2009 ◽  
Vol 25 (5) ◽  
pp. 361-366 ◽  
Author(s):  
X. G. Hu ◽  
W. J. Cai ◽  
Y. F. Xu ◽  
J. C. Wan ◽  
X. J. Sun

2011 ◽  
Vol 686 ◽  
pp. 569-573 ◽  
Author(s):  
Ming Feng Tan ◽  
Wan Chang Sun ◽  
Lei Zhang ◽  
Quan Zhou ◽  
Jin Ding

Electroless Ni-P coating containing ZrO2particles was successfully co-deposited on low carbon steel substrate. The surface and cross-sectional micrographs of the composite coatings were observed with scanning electron microscopy (SEM). And the chemical composition of the coating was analyzed with energy dispersive spectroscopy (EDS). The oxidation resistance was evaluated by weight gains during high temperature oxidation test. The results showed that the embedded ZrO2particles with irregular shape uniformly distributed in the entire Ni-P matrix, and the coating showed a good adhesion to the substrate. The weight gain curves of Ni-P-ZrO2composite coatings and Ni-P coating at 923K oxidation experiments were in accordance with . The ZrO2particles in Ni-P matrix could significantly enhance the high temperature oxidation resistance of the carbon steel substrate as compared to pure Ni-P coating.


1996 ◽  
Vol 74 (3) ◽  
pp. 99-102 ◽  
Author(s):  
Jiao-ning Tang ◽  
You-bei Xie

Wear ◽  
2000 ◽  
Vol 239 (1) ◽  
pp. 111-116 ◽  
Author(s):  
V.V.N Reddy ◽  
B Ramamoorthy ◽  
P.Kesavan Nair

Sign in / Sign up

Export Citation Format

Share Document