scholarly journals Single Particle Erosion Behavior of NiTi-Based Nanolaminates and Superelastic NiTi Monolayer Coatings

Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 617
Author(s):  
Nicole Cameron ◽  
Zoheir Farhat

Bulk NiTi is used to make parts, such as couplings and bearings, that can be found in many industries such as the automotive, aerospace and medical sectors. Forming and machining bulk superelastic NiTi is a very difficult and costly process; however, applying NiTi as a surface coating will provide an alternate manufacturing method that will minimize machining processes. The objective of this study is to produce a superelastic NiTi-based surface coating that exhibits denting, impact and wear resistance. Superelastic NiTi has been successfully produced through vacuum deposition processes, despite this, there is a lack of a full and comprehensive study on the formation of the NiTi phase during coating development. In this study, the NiTi phase is fabricated through the annealing of sputtered deposited Ti and Ni layers in a coating. To confirm the presence of the intermetallic phases, X-ray diffraction (XRD) and energy dispersive spectrometry (EDS) analysis were performed. The erosion behavior of the coating is evaluated through single particle erosion testing, which resulted in the coatings that contained the NiTi precipitates to exhibit the best damage resistance compared to the other nanolaminates. This indicates that the superelastic NiTi phase increases the resistance to impacting particles. Microstructural evolution and NiTi formation during annealing is discussed and related to the observed damage resistance of the coatings.

Author(s):  
Yu-yuan Hsieh ◽  
Ming-Yi Tsai ◽  
Zhi-Zhe Xu

Abstract The study has developed a new machining process for the side seal components of gray cast iron alloy of rotor engine, which is different from the traditional WEDM (wire electrical discharge machining) process. The new manufacturing process (milling + grinding process) will save 78% of the cost and 83% of the time for making each side seal component, and the accuracy of the average surface roughness of the component will be 2.1 times that of the traditional manufacturing method. If the components are polished with a self-made polishing rod, the accuracy will be increased by almost 20 times compared with the new manufacturing process.


2020 ◽  
Vol 993 ◽  
pp. 1095-1103
Author(s):  
Wen Long Chen ◽  
Hong Jian Wu ◽  
Min Liu ◽  
Xiao Ling Xiao

In this work, feather-column 7YSZ thermal barrier coatings (TBCs) were prepared by plasma spray-physical vapor deposition (PS-PVD). The anti-particle erosion test was carried out at room temperature to study the erosion behavior and failure mechanism of PS-PVD TBCs. The results showed that the particle erosion process of the PS-PVD TBCs experienced three stages of high-rate, medium-rate and slow-rate erosion. In order to improve the particle erosion resistance of the PS-PVD TBCs, different thicknesses of dense-layered coatings were prepared on the surface of the PS-PVD TBCs by air plasma spraying (APS). The effect of dense-layered thickness on the erosion behaviour of PS-PVD TBCs was discussed. Experimental results showed that, as the thickness of the dense-layered increased, the erosion resistance of the PS-PVD TBCs enhanced. When the thickness of the dense-layered coating was 5μm, it was not obvious upon the influence on the erosion failure behavior of the PS-PVD TBCs. In the case of a 10μm dense-layered coating, the erosion resistance performance of the PS-PVD TBCs improved by about 30%. While the erosion resistance performance of the PS-PVD TBCs increased almost 4 times when the thickness of the dense layer reached 20μm.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 286
Author(s):  
Shoya Mohseni-Mofidi ◽  
Eric Drescher ◽  
Harald Kruggel-Emden ◽  
Matthias Teschner ◽  
Claas Bierwisch

Solid particle erosion inevitably occurs if a gas–solid or liquid–solid mixture is in contact with a surface, e.g., in pneumatic conveyors. Having a good understanding of this complex phenomenon enables one to reduce the maintenance costs in several industrial applications by designing components that have longer lifetimes. In this paper, we propose a methodology to numerically investigate erosion behavior of ductile materials. We employ smoothed particle hydrodynamics that can easily deal with large deformations and fractures as a truly meshless method. In addition, a new contact model was developed in order to robustly handle contacts around sharp corners of the solid particles. The numerical predictions of erosion are compared with experiments for stainless steel AISI 304, showing that we are able to properly predict the erosion behavior as a function of impact angle. We present a powerful tool to conveniently study the effect of important parameters, such as solid particle shapes, which are not simple to study in experiments. Using the methodology, we study the effect of a solid particle shape and conclude that, in addition to angularity, aspect ratio also plays an important role by increasing the probability of the solid particles to rotate after impact. Finally, we are able to extend a widely used erosion model by a term that considers a solid particle shape.


1995 ◽  
Vol 44 (503) ◽  
pp. 1092-1096
Author(s):  
Noriyuki MIYAZAKI ◽  
Seiji FUNAKURA ◽  
Tsuyoshi MUNAKATA

Sign in / Sign up

Export Citation Format

Share Document