Cracking Possibility Evaluation of 304 Stainless Steel During Twin Roll Casting by 3D Simulation

Author(s):  
Xinliang Zang ◽  
Lianlian Liu ◽  
Qingxiang Yang
2014 ◽  
Vol 907 ◽  
pp. 29-39 ◽  
Author(s):  
Markus Daamen ◽  
Daniel Dávalos Julca ◽  
Gerhard Hirt

Conventional strips can be converted into tailored strips by further processing such as rolling and welding. Tailored strips have a thickness or thickness distribution which is designed according to the expected loads. A new approach for the production of tailored strips is the twin roll casting of profiled strips. This technology combines the advantages of direct strip casting and the production of steel strip with an optimized cross section. In this paper the achievable process limits regarding the geometry of tailored strips with varying thickness in the cross section made by strip profile rolling, twin roll casting and welding are discussed and compared. Furthermore, experiments to demonstrate the suitability of twin roll casting to produce tailored strips made of AISI 304 stainless steel are treated. A selected tailored strip geometry of 150 x 1.5 mm2 (width x thickness) with a difference in strip thickness of 33% over the width was cast.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 952
Author(s):  
Shiju Li ◽  
Bowen Wei ◽  
Wei Yu ◽  
Chen He ◽  
Yong Li ◽  
...  

In this work, a Al-Cu-Li alloy plate with outstanding mechanical properties was successfully prepared with electromagnetic twin-roll casting (TRC) technology. The microstructure of Al-Cu-Li alloy manufactured by conventional mold casting, TRC, and electromagnetic TRC was studied in detail. The action mechanism of electromagnetic oscillation field (EOF) in the TRC process was studied by systematic experimental characterization and numerical simulation. The results show that the EOF will enlarge the circumfluence area in the cast-rolling zone, accelerate the mass transfer and heat transfer in the molten pool, and make the solute field and flow field in the liquid cavity tend to be evenly distributed. Further, the introduction of the EOF will produce the electromagnetic body force F with the maximum strength of 14 N/m3. The F acting on the solidification front will eliminate the accumulation and deposition of Cu2+, Li+, Mg2+, Zn2+, Mn2+ at the dendrite tip and inhibit the growth of dendrites. At the same time, the F can refine the microstructure of the TRC plate, promote the formation of equiaxed crystals, improve the supersaturated solid solubility of solute elements in the a(Al) matrix, and avoid the appearance of obvious solute segregation area or the formation of excessive solute enrichment area. Therefore, the macro-segregation in TRC plate was significantly reduced, the solidification structure was dramatically refined, and the comprehensive properties of the alloy were remarkably improved.


2013 ◽  
Vol 690-693 ◽  
pp. 218-221
Author(s):  
Ting Zhang ◽  
Xiao Ming Zhang ◽  
Zhi Yuan Guo ◽  
Yu Qian Wang ◽  
Cheng Gang Li

Effect of secondary cooling on non-oriented electrical steel strips was investigated. The 2.0 mm thick cast strips contain two compositions were produced by twin-roll casting process, cooled in the air or cooled by spraying water. The microstructure was observed by optical microscopy, and EBSD was used to characterize the texture of the cast strips. The results showed that air-cooling cast strips have uniform and equiaxed grains with average size of 250 μm. The microstructure of the water-spraying cast strips compose of most equiaxed grains and a small number of abnormal big grains. At the same time, the secondary cooling rate mildly affects the cast texture strength but has no influence on the texture type.


Sign in / Sign up

Export Citation Format

Share Document