warm rolling
Recently Published Documents


TOTAL DOCUMENTS

315
(FIVE YEARS 64)

H-INDEX

27
(FIVE YEARS 7)

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Tao Zhang ◽  
Huigui Li ◽  
Hai Gong ◽  
Yunxin Wu ◽  
Abdulrahaman Shuaibu Ahmad ◽  
...  

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 115
Author(s):  
Tao Xu ◽  
Zhiyi Pan ◽  
Bo Gao ◽  
Jiaxi Huang ◽  
Xuefei Chen ◽  
...  

Warm rolling at temperatures ranging from 25 °C to 500 °C was conducted on the dual-phase heterostructured low-carbon steel to investigate the effect of deformation temperature on the structural refinement and mechanical properties. Defying our intuition, the grain size and strength of the rolled steels do not deteriorate with the increase in deformation temperature. Warm rolling at 300 °C produces a much finer lamellar structure and higher strength than steels rolled at both room temperature and elevated temperature. It is supposed that the enhanced interactions between carbon atoms and defects (interfaces and dislocations) at 300 °C promote dislocation accumulation and stabilize the nanostructure, thus helping with producing an extremely finer structure and higher strength than other temperatures.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1888
Author(s):  
Zigan Xu ◽  
Jiyao Li ◽  
Xiao Shen ◽  
Tarek Allam ◽  
Silvia Richter ◽  
...  

Developing medium-Mn steels (MMnS) demands a better understanding of the microstructure evolution during thermo-mechanical treatments (TMTs). This study demonstrates the relationship among processing, microstructure, and mechanical properties of a warm-rolled medium-Mn steel (MMnS) containing 1.5 wt. % Cu and 1.5 wt. % Ni. After short-time warm rolling (WR) in an intercritical temperature range, a significant quantity (40.6 vol.%) of austenite was reverted and retained after air cooling. The microstructure and tensile properties of the WR specimens were compared with two typical process routes, namely hot rolling+ cold rolling+ annealing+ tempering (CRAT) and warm rolling+ annealing+ tempering (WRAT). The WR specimen exhibited comparable tensile properties with the CRAT specimens (967 MPa yield strength, 1155 MPa tensile strength, 23% total elongation), with a remarkably shortened process route, which was derived from the dislocation accumulation and austenite reversion during rolling. The WR route stands out among the traditional CRAT and the extended WRAT routes for its excellent tensile properties and compact processing route.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6900
Author(s):  
Guolong Liu ◽  
Jingbao Liu ◽  
Jie Zhang ◽  
Minghe Zhang ◽  
Yunli Feng

The microstructure evolution and mechanical properties of medium carbon martensitic steel during the warm rolling and annealing process were studied by scanning electron microscope (SEM), electron back scattering diffraction (EBSD), and electronic universal testing machine. The results showed that the microstructure of ferrite matrix with mass dispersive cementite particles was obtained by decomposition of martensitic in medium-carbon martensitic steel after warm rolling. The grain size of ferrite was ~ 0.53 μm, the yield strength and tensile strength were 951 MPa and 968 MPa, respectively, and the total elongation rate was 11.5% after warm rolling at 600 °C. Additionally, after the next 4 h of annealing, the grain size of ferrite and particle size of cementite increased to ~1.35 μm and ~360 nm and the yield strength and tensile strength decreased to 600 MPa and 645 MPa, respectively, with a total elongation increases of 20.9%. The strength of the material increased with increasing strain rate in tension, and the yield-to-tensile strength ratio increased from 0.92 to 0.94 and maintained good plasticity.


2021 ◽  
Vol 9 (10) ◽  
pp. 1167-1176
Author(s):  
Omer Beganovic ◽  

The creep of the pre-strained superalloy N07080 is described in this work. The pre-strain was achieved by warm rolling at 1050 oC.-The warm rolling was performed due to additional strengthening, i.e increasing of the superalloy hardness.-The pre-strain drastically reduces the creep rupture life of the superalloy compared to the creep rupture life of the standard heat treated superalloy.-The drastic reductionof the creep rupture life is result of rapid creep cavity nucleation on stress concentration sites along primary grain boundaries of the pre-strained superalloy.-Recrystallization eliminates potential sites for rapid cavity nucleation and prolongates the creep rupture life.


2021 ◽  
Vol 9 (10) ◽  
pp. 680-689
Author(s):  
Omer Beganovic ◽  
◽  
Belma Fakic ◽  
Branka Muminovic ◽  
◽  
...  

Additional strengthening of superalloy N07080 described in this work was achieved by warm rolling. Control of the ratio of strength and ductile properties of the superalloy is possible by appropriate selection of the amount of warm deformation and the appropriate selection of the partial recrystallization temperature. In addition, recrystallization annealing makes it possible to equalize the grain size across the cross section of the warm rolled bars, which before recrystallization differ significantly in size in the central and peripheral parts of the bars.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Chenchen Zhi ◽  
Lifeng Ma ◽  
Weitao Jia ◽  
Pengtao Liu ◽  
Qichi Le ◽  
...  

AbstractA decrease in the weight of aerospace vehicles, large ships, weapons, and high-speed trains will increase the demand for wide-width magnesium alloy plates and their composite parts to replace steel and plastic. An investigation was conducted to study the variation in deformation behaviors along the transverse direction during the warm rolling of a 1480-mm-wide AZ31B plate. A uniaxial thermal compression test with a 59 % reduction was performed at different positions on a 13.7-mm-thick rolled plate along the width direction at a temperature of 220 °C and 270 °C and strain rate of 15 s−1. At the same time, the 13.7-mm-thick plate was rolled in a single pass to 5.6 mm on a mill with a 1725-mm-wide roll to confirm the thermal deformation behavior and the dynamic recrystallization (DRX). The results show that the main texture type does not change and the grain size does not have a clear deflection when the magnesium alloy plate reaches a certain value under rolling accumulative reduction. The grain size of a 13.7-mm-thick plate increases with a decrease in the distance to the center layer in the thickness direction. In the width direction, the edge (R6) first decreases and then increases toward the symmetric plane (R1). The critical stress required for dynamic recrystallization in the transition zone R3 of the rolled plate width is minimum, and the average grain size is minimum owing to the relatively complete recrystallization.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Juanping Xu ◽  
Jinxu Li ◽  
Zheng Wang ◽  
Hao Fu ◽  
Ming Wu

Purpose The purpose of this paper is to investigate the effect of the soft annealing time on the microstructure and hydrogen embrittlement (HE) of Fe-0.22C-11.54Mn-2.05Al steels. Design/methodology/approach Steels A and B with different morphologies were prepared by cold rolling after warm rolling, long/short softening annealing and finally annealing at 700 °C for 30 min. Uncharged and charged samples were subjected to tensile, and HE behavior was studied by electron backscattered diffraction, scanning electron microscopy and X-ray diffraction. Findings The two samples exhibited similar tensile strengths. The homogeneous equiaxed microstructure of steel B was found to be more conducive to relieve its HE sensitivity. Steel A exhibited bimodal-grained microstructures – blocky and lath. The formation of crack in the blocky grains of steel A resulted in a significant reduction in its plasticity and tensile strength. Originality/value The high HE susceptibility of steel A is mainly connected with the inhomogeneity of martensite transformation.


Sign in / Sign up

Export Citation Format

Share Document