Improvement of Coating Properties in Three-Cathode Atmospheric Plasma Spraying

2013 ◽  
Vol 22 (4) ◽  
pp. 502-508 ◽  
Author(s):  
K. Bobzin ◽  
N. Kopp ◽  
T. Warda ◽  
I. Petković ◽  
S. Zimmermann ◽  
...  
Author(s):  
T. Lehtinen ◽  
J. Knuuttila ◽  
J. Vattulainen ◽  
T. Mäntylä ◽  
R. Hernberg

Abstract The plasma spraying process is controlled by various parameters that have an influence on powder particle velocities, temperatures and trajectories just before impact to the substrate. In order to fully utilize the thermal and kinetic energy of the plasma it is important to obtain information from these powder particle properties. In this work an intensified CCD camera has been used to detect in-flight particles in an atmospheric plasma spraying process. Plasma spraying was performed using fused and crushed AI2O3 powder. The powder carrier gas flow rate was varied during the spraying experiments. All the other deposition parameters were kept constant. Coatings produced using relatively new spraygun electrodes are compared with ones produced later with the same electrodes when they were worn out. The particle concentration is determined on a relative scale by the fraction of the area of a CCD camera frame covered by particle images. Further investigations necessary to clearify the relationship between the measured relative particle concentration and the true particle concentration are identified. The coatings are analyzed for wear resistance, degree of melting, deposition efficiency, hardness and porosity. The dependence of these coating properties on the relative particle concentration and the effect of electrode wear on the relative particle concentration are studied.


2018 ◽  
Vol 37 (4) ◽  
pp. 187-192
Author(s):  
Fan Wang ◽  
Guangnan Luo ◽  
Jianjun Huang

Vacuum ◽  
1990 ◽  
Vol 41 (7-9) ◽  
pp. 2209-2212 ◽  
Author(s):  
H.-D. Steffens ◽  
M. Mack

2017 ◽  
Vol 69 (5) ◽  
pp. 808-814
Author(s):  
Qingjun Ding ◽  
Bo Tian ◽  
Gai Zhao ◽  
Feng Wang ◽  
Huafeng Li ◽  
...  

Purpose This study systematically investigated the effect of the binary rare earth oxide of La2O3 and Sm2O3 on the properties of the Al2O3/TiO2 (AT) coating, including phase transform, wear behavior, etc. Design/methodology/approach AT coatings mixed with different components of binary rare earth oxides of La2O3 and Sm2O3 are prepared by atmospheric plasma spraying. The adhesion strength, micro-hardness, phase transition and tribological behavior of coatings are systematically investigated. Findings The X-ray diffraction (XRD) analysis shows that phase transformation is obvious after spraying, and a-Al2O3 is almost translated into γ-Al2O3 when La2O3 and Sm2O3 are doped together. Meanwhile, solid solution generated between rare earth oxide and Al2O3/TiO2 coatings results in disappearance of TiO2 and rare earth oxide phase. The photos under the scanning electron microscope (SEM) indicate that binary rare earth oxide could increase the melting degree of powder and decrease porosity of coatings.The increasing of Sm2O3 rarely affect micro-hardness and adhesion strength, and the coating with 4 per cent Sm2O3 and 1 per cent La2O3 exhibits the best wear resistance and lowest friction coefficient among all the samples. Originality/value AT coatings mixed with different components of binary rare earth oxide of La2O3 and Sm2O3 are prepared by atmospheric plasma spraying. Binary rare earth oxide could increase the melting degree of powder and decrease porosity of AT coatings.


Sign in / Sign up

Export Citation Format

Share Document