particle characteristics
Recently Published Documents


TOTAL DOCUMENTS

494
(FIVE YEARS 85)

H-INDEX

42
(FIVE YEARS 5)

Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 28
Author(s):  
Helena Herrada-Manchón ◽  
David Rodríguez-González ◽  
Manuel Alejandro Fernández ◽  
Nathan William Kucko ◽  
Florence Barrère-de Groot ◽  
...  

The production of patient-specific bone substitutes with an exact fit through 3D printing is emerging as an alternative to autologous bone grafting. To the success of tissue regeneration, the material characteristics such as porosity, stiffness, and surface topography have a strong influence on the cell–material interaction and require significant attention. Printing a soft hydrocolloid-based hydrogel reinforced with irregularly-shaped microporous biphasic calcium phosphate (BCP) particles (150–500 µm) is an alternative strategy for the acquisition of a complex network with good mechanical properties that could fulfill the needs of cell proliferation and regeneration. Three well-known hydrocolloids (sodium alginate, xanthan gum, and gelatin) have been combined with BCP particles to generate stable, homogenous, and printable solid dispersions. Through rheological assessment, it was determined that the crosslinking time, printing process parameters (infill density percentage and infill pattern), as well as BCP particle size and concentration all influence the stiffness of the printed matrices. Additionally, the swelling behavior on fresh and dehydrated 3D-printed structures was investigated, where it was observed that the BCP particle characteristics influenced the constructs’ water absorption, particle diffusion out of the matrix and degradability.


2021 ◽  
Author(s):  
Galen Egan ◽  
Grace Chang ◽  
Andrew James Manning ◽  
Stephen G. Monismith ◽  
Oliver B. Fringer

2021 ◽  
pp. 199-260
Author(s):  
Tânia Gomes ◽  
Agathe Bour ◽  
Claire Coutris ◽  
Ana Catarina Almeida ◽  
Inger Lise Bråte ◽  
...  

AbstractPlastic pollution is a widespread environmental problem that is currently one of the most discussed issues by scientists, policymakers and society at large. The potential ecotoxicological effects of plastic particles in a wide range of organisms have been investigated in a growing number of exposure studies over the past years. Nonetheless, many questions still remain regarding the overall effects of microplastics and nanoplastics on organisms from different ecosystem compartments, as well as the underlying mechanisms behind the observed toxicity. This chapter provides a comprehensive literature review on the ecotoxicological impacts of microplastics and nanoplastics in terrestrial and aquatic organisms in the context of particle characteristics, interactive toxicological effects, taxonomic gradients and with a focus on synergies with associated chemicals. Overall, a total of 220 references were reviewed for their fulfilment of specific quality criteria (e.g. experimental design, particle characteristics, ecotoxicological endpoints and findings), after which 175 were included in our assessment. The analysis of the reviewed studies revealed that organisms’ responses were overall influenced by the physicochemical heterogeneity of the plastic particles used, for which distinct differences were attributed to polymer type, size, morphology and surface alterations. On the other hand, little attention has been paid to the role of additive chemicals in the overall toxicity. There is still little consistency regarding the biological impacts posed by plastic particles, with observed ecotoxicological effects being highly dependent on the environmental compartment assessed and specific morphological, physiological and behavioural traits of the species used. Nonetheless, evidence exists of impacts across successive levels of biological organization, covering effects from the subcellular level up to the ecosystem level. This review presents the important research gaps concerning the ecotoxicological impacts of plastic particles in different taxonomical groups, as well as recommendations on future research priorities needed to better understand the ecological risks of plastic particles in terrestrial and aquatic environments.


2021 ◽  
Author(s):  
Matthew Bigl ◽  
Samuel Beal ◽  
Charles Ramsey

The environmental fate and transport of energetic compounds on military training ranges are largely controlled by the particle characteristics of low-order detonations. This study demonstrated a method of command detonation, field sampling, laboratory processing, and analysis techniques for characterizing low-order detonation particles from 60 mm and 81 mm mortar rounds containing the insensitive munition formulation IMX-104. Particles deposited from three rounds of each caliber were comprehensively sampled and characterized for particle size, energetic purity, and morphology. The 60 mm rounds were command-detonated low order consistently (seven low-order detonations of seven tested rounds), with con-sumption efficiencies of 62%–80% (n = 3). The 81 mm rounds detonated low order inconsistently (three low-order detonations of ten tested rounds), possibly because the rounds were sourced from manufacturing test runs. These rounds had lower consumption efficiencies of 39%–64% (n = 3). Particle-size distributions showed significant variability between munition calibers, between rounds of the same caliber, and with distance from the detonation point. The study reviewed command-detonation configurations, particle transfer losses during sampling and particle-size analysis, and variations in the energetic purity of recovered particles. Overall, this study demonstrated the successful characterization of IMX-104 low-order detonation particles from command detonation to analysis.


Author(s):  
Zefeng Tao ◽  
Zengyi Wang ◽  
Jianming Ling ◽  
Yu Tian ◽  
Juewei Cai ◽  
...  

Granular materials are widely used for bases or subbases in pavement structures. They typically exhibit strong anisotropic properties which relate to stress states and particle characteristics. The conventional design procedure for flexible pavements underestimates the anisotropy of resilient moduli. This study established an anisotropic resilient modulus model for granular materials that considered gradation and particle shape characteristics. Vertical and horizontal resilient moduli of certain granular materials were measured in self-developed triaxial tests to obtain corresponding model parameters and anisotropic coefficients. Gradation and particle shape models were established to quantify the granular material characteristics, and the parameters were regressed. Particle shapes were obtained via image processing, and the ratio ( η) of particle sphericity to roundness was chosen as a shape parameter. Results show that η increases with the decrease in particle size, and the average values of η for graded gravel and natural laterite are 0.54 and 0.63, respectively. The η distribution curves indicate that the proportion of relatively anisotropic particles, rather than extremely anisotropic particles, results in the differences in particle shape characteristics. The regression relationship between the anisotropic calculation parameters and the model parameters of vertical resilient modulus, gradation, and particle shape was established. Thus, the horizontal resilient modulus and the anisotropic coefficient can be predicted via conventional resilient modulus tests and gradation, and particle shape analysis. This study shows that the anisotropy of granular materials decreases with the increase in coarse particles and the uniformization of the particle size distribution, and it increases with the increase in anisotropic particles and the polarization of the η distribution.


2021 ◽  
Vol 56 (4) ◽  
pp. 241-251
Author(s):  
Anwar Mallongi ◽  
Stang ◽  
Annisa Utami Rauf ◽  
Ratna Dwi Puji Astuti

Air pollution caused by industrial activities, especially those near settlements, has become the most significant concern because ambient air pollution can threaten the environment and the surrounding community's health. Several assessments and evaluations of particle characteristics (PM) from various sources become very important to protect humans and the environment. This study aimed to analyze the magnitude of PM 2.5 in the ambient air, surface soil and assess the environmental and public health risks due to exposure to the breathing of air and dermal contact containing PM 2.5 emitted from the cement industry around the school and settlement and its potential lung diseases occurrence. The method used in data analysis is a linear regression statistical test to determine the relationship between PM2.5 air quality with outdoor activities by children and respiratory disorders experienced. Health risk analysis and environmental risk were calculated using the equations provided by the EPA and WHO. To determine the magnitude of risk received by the environment and children if exposed to PM 2.5 within a certain time. Direct measurements in the field were carried out in the morning until noon, with 23 sample points measured the level of PM 2.5 pollution during June 2021. Based on the study, it is concluded that the health risks through the inhalation route all exceed the standard >1, and the potential for pulmonary disorders in children can occur, while the risk from the dermal route is still <1.


Sign in / Sign up

Export Citation Format

Share Document