Finite Element Fatigue Analysis of Mouldboard Plough Cross Bar Based on the Draft Force of MF 399 Tractor

2020 ◽  
Vol 20 (6) ◽  
pp. 2106-2110
Author(s):  
Ahmad Jahanbakhshi ◽  
Saadi Heidari Raz Dareh ◽  
Kamran Kheiralipour
2021 ◽  
Author(s):  
Anthony Muff ◽  
Anders Wormsen ◽  
Torfinn Hørte ◽  
Arne Fjeldstad ◽  
Per Osen ◽  
...  

Abstract Guidance for determining a S-N based fatigue capacity (safe life design) for preloaded connectors is included in Section 5.4 of the 2019 edition of DNVGL-RP-C203 (C203-2019). This section includes guidance on the finite element model representation, finite element based fatigue analysis and determination of the connector design fatigue capacity by use of one of the following methods: Method 1 by FEA based fatigue analysis, Method 2 by FEA based fatigue analysis and experimental testing and Method 3 by full-scale connector fatigue testing. The FEA based fatigue analysis makes use of Appendix D.2 in C203-2019 (“S-N curves for high strength steel applications for subsea”). Practical use of Section 5.4 is illustrated with a case study of a fatigue tested wellhead profile connector segment test. Further developments of Section 5.4 of C203-2019 are proposed. This included acceptance criteria for use of a segment test to validate the FEA based fatigue analysis of a full-scale preloaded connector.


Author(s):  
Gürkan İrsel

In this study, the total algorithm of the strength-based design of the system for mass production has been developed. The proposed algorithm, which includes numerical, analytical, and experimental studies, was implemented through a case study on the strength-based structural design and fatigue analysis of a tractor-mounted sunflower stalk cutting machine (SSCM). The proposed algorithm consists of a systematic engineering approach, material selection and testing, design of the mass criteria suitability, structural stress analysis, computer-aided engineering (CAE), prototype production, experimental validation studies, fatigue calculation based on an FE model and experimental studies (CAE-based fatigue analysis), and an optimization process aimed at minimum weight. Approximately 85% of the system was designed using standard commercially available cross-section beams and elements using the proposed algorithm. The prototype was produced, and an HBM data acquisition system was used to collect the strain gage output. The prototype produced was successful in terms of functionality. Two- and three-dimensional mixed models were used in the structural analysis solution. The structural stress analysis and experimental results with a strain gage were 94.48% compatible in this study. It was determined using nCode DesignLife software that fatigue damage did not occur in the system using the finite element analysis (FEA) and experimental data. The SSCM design adopted a multi-objective genetic algorithm (MOGA) methodology for optimization with ANSYS. With the optimization solved from 422 iterations, a maximum stress value of 57.65 MPa was determined, and a 97.72 kg material was saved compared to the prototype. This study provides a useful methodology for experimental and advanced CAE techniques, especially for further study on complex stress, strain, and fatigue analysis of new systematic designs desired to have an optimum weight to strength ratio.


2019 ◽  
Vol 17 (1) ◽  
pp. 25-40 ◽  
Author(s):  
Hafida Kahoul ◽  
Samira Belhour ◽  
Ahmed Bellaouar ◽  
Jean Paul Dron

Purpose This paper aims to present the fatigue life behaviour of upper arm suspension. The main objectives are to predict the fatigue life of the component and to identify the critical location. In this analysis, three aluminium alloys were used for the suspension, and their fatigue life was compared to select the suitable material for the suspension arm. Design/methodology/approach CAD model was prepared using Solid Works software, and finite element analysis was done using ANSYS 14.0 software by importing the Parasolid file to ANSYS. The model is subjected to loading and boundary conditions; the authors consider a vertical force with constant amplitude applied at the bushing that connected to the tire, the others two bushing that connected to the body of the car are constraint. Tetrahedral elements given enhanced results as compared to other types of elements; therefore, the elements (TET 10) are used. The maximum principal stress was considered in the linear static analysis, and fatigue analysis was done using strain life approach. Findings Life and damage are evaluated and the critical location was considered at node 63,754. From the fatigue analysis, aluminium alloys 7175-T73 (Al 90%-Zn 5.6%-Mg 2.5% -… …) and 2014-T6 (Al 93.5%-Cu 4.4%-Mg 0.5%… …) present a similar behaviour as compared to 6061-T6 (Al 97.9%-Mg 1.0%-Si 0.6%… … .); in this case of study, these lather are considered to be the materials of choice to manufacture the suspension arms; but 7175-T73 aluminium alloys remain the material with a better resistance to fatigue. Originality/value By the finite element analysis method and assistance of ANSYS software, it is able to analyse the different car components from varied aspects such as fatigue, and consequently save time and cost. For further research, the experimental works under controlled laboratory conditions should be done to determine the validation of the result from the software analysis.


Author(s):  
DongHoon Choi ◽  
Jae-Hoon Kim

Mobile elevating work platforms (MEWPs) consist of a work platform, extending structure, and chassis, and are used to move persons to working positions. MEWPs are useful but are composed of pieces of equipment, and accidents do occur owing to equipment defects. Among these defects, accidents caused by the fracture of bolts fixed to the extension structure and swing system are increasing. This paper presents a failure analysis of the fixing bolts of MEWP. Standard procedure for failure analysis was employed in this investigation. Visual inspection, chemical analysis, tensile strength measurement, and finite element analysis (FEA) were used to analyze the failure of the fixing bolts. Using this failure analysis approach, we found the root cause of failure and proposed a means for solving this type of failure in the future. First, the chemical composition of the fixing bolt is obtained by a spectroscopy chemical analysis method, which determined that the chemical composition matched the required standard. The tensile test showed that the tensile and yield strengths were within the required capacity. The stress analysis was carried out at five different boom angles, and it was determined that the fixing bolt of MEWP can withstand the loads at all the boom angles. The outcomes of the fatigue analysis revealed that the fixing bolt fails before reaching the design requirements. The results of the fatigue analysis showed primarily that the failure of the fixing bolt was due to fatigue. A visual inspection of the fractured section of the fixing bolt also confirmed the fatigue failure. We propose a method to prevent failure of the fixing bolt of the MEWP from four different standpoints: the manufacturer, safety certification authority, safety inspection agency, and owner.


2008 ◽  
Vol 8 (23) ◽  
pp. 4338-4345 ◽  
Author(s):  
M. Omid ◽  
S.S. Mohtasebi ◽  
S.A. Mireei ◽  
E. Mahmoodi

Sign in / Sign up

Export Citation Format

Share Document