scholarly journals Brainstem substructures and cognition in prodromal Alzheimer’s disease

Author(s):  
Shubir Dutt ◽  
◽  
Yanrong Li ◽  
Mara Mather ◽  
Daniel A. Nation

AbstractNeuropathological research suggests the tau pathology of Alzheimer’s disease may originate in brainstem nuclei, yet it remains unknown whether tau-mediated degeneration of brainstem nuclei influences cognitive impairment in prodromal Alzheimer’s disease. The present study examined cognitive domains impacted in prodromal Alzheimer’s disease and brainstem substructure volume in cognitively normal older adults (n = 814) and those with mild cognitive impairment (n = 542). Subsamples of cognitively normal (n = 112) and mild cognitive impairment (n = 202) also had cerebrospinal fluid Alzheimer’s disease biomarker characterization. Region-of-interest and voxel-level analyses related whole brainstem, midbrain, pons, and locus coeruleus volumes to cognition with multiple linear regression models corrected for age, sex, education, apolipoprotein-ε4 carrier status, and MRI magnet strength. Within mild cognitive impairment participants, smaller midbrain and locus coeruleus volumes were significantly related to poorer performance on tests of attention and executive function, and the relationship between locus coeruleus volume and executive abilities remained significant in the mild cognitive impairment subsample with biomarker-confirmed Alzheimer’s disease. A brainstem-masked voxel-wise regression further demonstrated an association between locus coeruleus volume and executive abilities. Brainstem volumes were not significantly related to memory processes. Study findings implicate midbrain and locus coeruleus volume in attention and executive deficits in mild cognitive impairment. Together with prior neuropathological studies, our data suggest a link between Alzheimer’s disease-related degeneration of brainstem nuclei and cognitive deficits in prodromal Alzheimer’s disease.

2020 ◽  
Vol 77 (4) ◽  
pp. 1579-1594 ◽  
Author(s):  
Shubir Dutt ◽  
Yanrong Li ◽  
Mara Mather ◽  
Daniel A. Nation ◽  

Background: Neuropathological studies have suggested the tau pathology observed in Alzheimer’s disease (AD) originates in brainstem nuclei, but no studies to date have quantified brainstem volumes in clinical populations with biomarker-confirmed mild cognitive impairment (MCI) or dementia due to AD or determined the value of brainstem volumetrics in predicting dementia. Objective: The present study examined whether MRI-based brainstem volumes differ among cognitively normal older adults and those with MCI or dementia due to AD and whether preclinical brainstem volumes predict future progression to dementia. Methods: Alzheimer’s Disease Neuroimaging Initiative participants (N = 1,629) underwent baseline MRI scanning with variable clinical follow-up (6–120 months). Region of interest and voxel-based morphometric methods assessed brainstem volume differences among cognitively normal (n = 814), MCI (n = 542), and AD (n = 273) participants, as well as subsets of cerebrospinal fluid biomarker-confirmed MCI (n = 203) and AD (n = 160) participants. Results: MCI and AD cases showed smaller midbrain volumes relative to cognitively normal participants when normalizing to whole brainstem volume, and showed smaller midbrain, locus coeruleus, pons, and whole brainstem volumes when normalizing to total intracranial volume. Cognitively normal individuals who later progressed to AD dementia diagnosis exhibited smaller baseline midbrain volumes than individuals who did not develop dementia, and voxel-wise analyses revealed specific volumetric reduction of the locus coeruleus. Conclusion: Findings are consistent with neuropathological observations of early AD-related pathology in brainstem nuclei and further suggest the clinical relevance of brainstem substructural volumes in preclinical and prodromal AD.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Jiangyi Xia ◽  
Ali Mazaheri ◽  
Katrien Segaert ◽  
David P Salmon ◽  
Danielle Harvey ◽  
...  

Abstract Reliable biomarkers of memory decline are critical for the early detection of Alzheimer’s disease. Previous work has found three EEG measures, namely the event-related brain potential P600, suppression of oscillatory activity in the alpha frequency range (∼10 Hz) and cross-frequency coupling between low theta/high delta and alpha/beta activity, each of which correlates strongly with verbal learning and memory abilities in healthy elderly and patients with mild cognitive impairment or prodromal Alzheimer’s disease. In the present study, we address the question of whether event-related or oscillatory measures, or a combination thereof, best predict the decline of verbal memory in mild cognitive impairment and Alzheimer’s disease. Single-trial correlation analyses show that despite a similarity in their time courses and sensitivities to word repetition, the P600 and the alpha suppression components are minimally correlated with each other on a trial-by-trial basis (generally |rs| < 0.10). This suggests that they are unlikely to stem from the same neural mechanism. Furthermore, event-related brain potentials constructed from bandpass filtered (delta, theta, alpha, beta or gamma bands) single-trial data indicate that only delta band activity (1–4 Hz) is strongly correlated (r = 0.94, P < 0.001) with the canonical P600 repetition effect; event-related potentials in higher frequency bands are not. Importantly, stepwise multiple regression analyses reveal that the three event-related brain potential/oscillatory measures are complementary in predicting California Verbal Learning Test scores (overall R2’s in 0.45–0.63 range). The present study highlights the importance of combining EEG event-related potential and oscillatory measures to better characterize the multiple mechanisms of memory failure in individuals with mild cognitive impairment or prodromal Alzheimer’s disease.


2020 ◽  
pp. 1-10
Author(s):  
Christopher Gonzalez ◽  
Nicole S. Tommasi ◽  
Danielle Briggs ◽  
Michael J. Properzi ◽  
Rebecca E. Amariglio ◽  
...  

Background: Financial capacity is often one of the first instrumental activities of daily living to be affected in cognitively normal (CN) older adults who later progress to amnestic mild cognitive impairment (MCI) and Alzheimer’s disease (AD) dementia. Objective: The objective of this study was to investigate the association between financial capacity and regional cerebral tau. Methods: Cross-sectional financial capacity was assessed using the Financial Capacity Instrument –Short Form (FCI-SF) in 410 CN, 199 MCI, and 61 AD dementia participants who underwent flortaucipir tau positron emission tomography from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Linear regression models with backward elimination were used with FCI-SF total score as the dependent variable and regional tau and tau-amyloid interaction as predictors of interest in separate analyses. Education, age sex, Rey Auditory Verbal Learning Test Total Learning, and Trail Making Test B were used as covariates. Results: Significant associations were found between FCI-SF and tau regions (entorhinal: p <  0.001; inferior temporal: p <  0.001; dorsolateral prefrontal: p = 0.01; posterior cingulate: p = 0.03; precuneus: p <  0.001; and supramarginal gyrus: p = 0.005) across all participants. For the tau-amyloid interaction, significant associations were found in four regions (amyloid and dorsolateral prefrontal tau interaction: p = 0.005; amyloid and posterior cingulate tau interaction: p = 0.005; amyloid and precuneus tau interaction: p <  0.001; and amyloid and supramarginal tau interaction: p = 0.002). Conclusion: Greater regional tau burden was modestly associated with financial capacity impairment in early-stage AD. Extending this work with longitudinal analyses will further illustrate the utility of such assessments in detecting clinically meaningful decline, which may aid clinical trials of early-stage AD.


Author(s):  
McKenna E Williams ◽  
Jeremy A Elman ◽  
Linda K McEvoy ◽  
Ole A Andreassen ◽  
Anders M Dale ◽  
...  

Abstract Neuroimaging signatures based on composite scores of cortical thickness and hippocampal volume predict progression from mild cognitive impairment to Alzheimer’s disease. However, little is known about the ability of these signatures among cognitively normal adults to predict progression to mild cognitive impairment. Toward that end, a signature sensitive to microstructural changes that may predate macrostructural atrophy should be useful. We hypothesized that: 1) a validated MRI-derived Alzheimer’s disease signature based on cortical thickness and hippocampal volume in cognitively normal middle-aged adults would predict progression to mild cognitive impairment; and 2) a novel gray matter mean diffusivity signature would be a better predictor than the thickness/volume signature. This cohort study was part of the Vietnam Era Twin Study of Aging. Concurrent analyses compared cognitively normal and mild cognitive impairment groups at each of three study waves (ns = 246–367). Predictive analyses included 169 cognitively normal men at baseline (age = 56.1, range = 51–60). Our previously published thickness/volume signature derived from independent data, a novel mean diffusivity signature using the same regions and weights as the thickness/volume signature, age, and an Alzheimer’s disease polygenic risk score were used to predict incident mild cognitive impairment an average of 12 years after baseline (follow-up age = 67.2, range = 61–71). Additional analyses adjusted for predicted brain age difference scores (chronological age minus predicted brain age) to determine if signatures were Alzheimer-related and not simply aging-related. In concurrent analyses, individuals with mild cognitive impairment had higher (worse) mean diffusivity signature scores than cognitively normal participants, but thickness/volume signature scores did not differ between groups. In predictive analyses, age and polygenic risk score yielded an area under the curve of 0.74 (sensitivity = 80.00%; specificity = 65.10%). Prediction was significantly improved with addition of the mean diffusivity signature (area under the curve = 0.83; sensitivity = 85.00%; specificity = 77.85%; P=0.007), but not with addition of the thickness/volume signature. A model including both signatures did not improve prediction over a model with only the mean diffusivity signature. Results held up after adjusting for predicted brain age difference scores. The novel mean diffusivity signature was limited by being yoked to the thickness/volume signature weightings. An independently-derived mean diffusivity signature may thus provide even stronger prediction. The young age of the sample at baseline is particularly notable. Given that the brain signatures were examined when participants were only in their 50 s, our results suggest a promising step toward improving very early identification of Alzheimer’s disease risk and the potential value of mean diffusivity and/or multimodal brain signatures.


2019 ◽  
Vol 25 (7) ◽  
pp. 688-698 ◽  
Author(s):  
Leslie S. Gaynor ◽  
Rosie E. Curiel Cid ◽  
Ailyn Penate ◽  
Mónica Rosselli ◽  
Sara N. Burke ◽  
...  

AbstractObjective:Detection of cognitive impairment suggestive of risk for Alzheimer’s disease (AD) progression is crucial to the prevention of incipient dementia. This study was performed to determine if performance on a novel object discrimination task improved identification of earlier deficits in older adults at risk for AD.Method:In total, 135 participants from the 1Florida Alzheimer’s Disease Research Center [cognitively normal (CN), Pre-mild cognitive impairment (PreMCI), amnestic mild cognitive impairment (aMCI), and dementia] completed a test of object discrimination and traditional memory measures in the context of a larger neuropsychological and clinical evaluation.Results:The Object Recognition and Discrimination Task (ORDT) revealed significant differences between the PreMCI, aMCI, and dementia groups versus CN individuals. Moreover, relative risk of being classified as PreMCI rather than CN increased as an inverse function of ORDT score.Discussion:Overall, the obtained results suggest that a novel object discrimination task improves the detection of very early AD-related cognitive impairment, increasing the window for therapeutic intervention. (JINS, 2019,25, 688–698)


Sign in / Sign up

Export Citation Format

Share Document