prodromal ad
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 65)

H-INDEX

16
(FIVE YEARS 6)

Author(s):  
S. Sindi ◽  
C. Thunborg ◽  
A. Rosenberg ◽  
P. Andersen ◽  
S. Andrieu ◽  
...  

Background: Interventions simultaneously targeting multiple risk factors and mechanisms are most likely to be effective in preventing cognitive impairment. This was indicated in the Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) testing a multidomain lifestyle intervention among at-risk individuals. The importance of medical food at the early symptomatic disease stage, prodromal Alzheimer’s disease (AD), was emphasized in the LipiDiDiet trial. The feasibility and effects of multimodal interventions in prodromal AD are unclear. Objectives: To evaluate the feasibility of an adapted FINGER-based multimodal lifestyle intervention, with or without medical food, among individuals with prodromal AD. Methods: MIND-ADmini is a multinational proof-of-concept 6-month randomized controlled trial (RCT), with four trial sites (Sweden, Finland, Germany, France). The trial targeted individuals with prodromal AD defined using the International Working Group-1 criteria, and with vascular or lifestyle-related risk factors. The parallel-group RCT includes three arms: 1) multimodal lifestyle intervention (nutritional guidance, exercise, cognitive training, vascular/metabolic risk management and social stimulation); 2) multimodal lifestyle intervention+medical food (Fortasyn Connect); and 3) regular health advice/care (control group). Primary outcomes are feasibility and adherence. Secondary outcomes are adherence to the individual intervention domains and healthy lifestyle changes. Results: Screening began on 28 September 2017 and was completed on 21 May 2019. Altogether 93 participants were randomized and enrolled. The intervention proceeded as planned. Conclusions: For the first time, this pilot trial tests the feasibility and adherence to a multimodal lifestyle intervention, alone or combined with medical food, among individuals with prodromal AD. It can serve as a model for combination therapy trials (non-pharma, nutrition-based and/or pharmacological interventions).


2021 ◽  
Author(s):  
Viktor Janos Olah ◽  
Annie M Goettemoeller ◽  
Jordane Dimidschstein ◽  
Matthew JM Rowan

In Alzheimer's disease (AD), a multitude of genetic risk factors and early biomarkers are known. Nevertheless, the causal factors responsible for initiating cognitive decline in AD remain controversial. Toxic plaques and tangles correlate with progressive neuropathology, yet disruptions in circuit activity emerge before their deposition in AD models and patients. Parvalbumin (PV) interneurons are potential candidates for dysregulating cortical excitability, as they display altered AP firing before neighboring excitatory neurons in prodromal AD. Here we report a novel mechanism responsible for PV hypoexcitability in young adult familial AD mice. We found that biophysical modulation of K+ channels, but not changes in mRNA expression, are responsible for dampened excitability. These K+ conductances could efficiently regulate near-threshold AP firing, resulting in gamma-frequency specific network hyperexcitability. Our findings suggest that posttranslational modulation of ion channels can reshape cortical network activity prior to changes in their gene expression in early AD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ming-Chyi Pai ◽  
Chiu-Jun Yang ◽  
Sheng-Yu Fan

Background: Time perception is a subjective experience or sense of time. Previous studies have shown that Alzheimer's dementia (AD) patients have time perception deficits compared to a cognitively unimpaired control group (CU). There are only a few studies on dementia with Lewy bodies (DLB) patients' time perception in comparison with CU and AD patients. Early intervention and prescription of the right medicine may delay the deterioration of AD and DLB, moreover, knowing how prodromal AD (prAD) and prodromal DLB's (prDLB) time perception differ from each other might be helpful for future understanding of these two dementias. Therefore, the purpose of this study is to explore the difference in time perception performance between prodromal AD and prodromal DLB.Methods: We invited people diagnosed with prAD, prDLB, and CU to participate in this study. Tests of verbal estimation of time and time interval production were used to assess their time perception. We analyzed the average time estimation (ATE), absolute error score (ABS), coefficient of variance (CV), and subjective temporal unit (STU) within the three groups.Results: A total of 40 prAD, 30 prDLB, and 47 CU completed the study. In the verbal estimation test, the CV for the prAD was higher than both prDLB and CU at the 9 s interval, and the CV of prAD was higher than CU at the 27 s interval. In the time interval production test, the subjective time units of prDLB were higher than prAD at the 10 s interval, while those of both prDLB and CU were higher than prAD at the 30 s interval. The percentage of subjects with STU < 1.0 s, indicating overestimation, was higher in prAD than both prDLB and CU.Conclusion: Time perception of prAD patients showed imprecision and overestimation of time, while prDLB tended to underestimate time intervals. No significant difference was found in accuracy among the three groups. It is speculated that the clinical and pathological severity of the two prodromal dementia stages may be different, and some patients have not yet had their time perception affected.


2021 ◽  
pp. 1-15
Author(s):  
Elisa Colato ◽  
Konstantinos Chiotis ◽  
Daniel Ferreira ◽  
Mariam S. Mazrina ◽  
Laetitia Lemoine ◽  
...  

Background: In Alzheimer’s disease (AD), the abnormal aggregation of hyperphosphorylated tau leads to synaptic dysfunction and neurodegeneration. Recently developed tau PET imaging tracers are candidate biomarkers for diagnosis and staging of AD. Objective: We aimed to investigate the discriminative ability of 18F-THK5317 and 18F-flortaucipir tracers and brain atrophy at different stages of AD, and their respective associations with cognition. Methods: Two cohorts, each including 29 participants (healthy controls [HC], prodromal AD, and AD dementia patients), underwent 18F-THK5317 or 18F-flortaucipir PET, T1-weighted MRI, and neuropsychological assessment. For each subject, we quantified regional 18F-THK5317 and 18F-flortaucipir uptake within six bilateral and two composite regions of interest. We assessed global brain atrophy for each individual by quantifying the brain volume index, a measure of brain volume-to-cerebrospinal fluid ratio. We then quantified the discriminative ability of regional 18F-THK5317, 18F-flortaucipir, and brain volume index between diagnostic groups, and their associations with cognition in patients. Results: Both 18F-THK5317 and 18F-flortaucipir outperformed global brain atrophy in discriminating between HC and both prodromal AD and AD dementia groups. 18F-THK5317 provided the highest discriminative ability between HC and prodromal AD groups. 18F-flortaucipir performed best at discriminating between prodromal and dementia stages of AD. Across all patients, both tau tracers were predictive of RAVL learning, but only 18F-flortaucipir predicted MMSE. Conclusion: Our results warrant further in vivo head-to-head and antemortem-postmortem evaluations. These validation studies are needed to select tracers with high clinical validity as biomarkers for early diagnosis, prognosis, and disease staging, which will facilitate their incorporation in clinical practice and therapeutic trials.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yan-Li Wang ◽  
Jinglong Chen ◽  
Zhong-Li Du ◽  
Haoyi Weng ◽  
Yuan Zhang ◽  
...  

Background: Plasma-based biomarkers would be potential biomarkers for early diagnosis of Alzheimer's disease (AD) because they are more available and cost-effective than cerebrospinal fluid (CSF) or neuroimaging. Therefore, we aimed to evaluate whether phosphorylated tau181 (p-tau181) in plasma could be an accurate AD predictor.Methods: Participants from the ADNI database included 185 cognitively unimpaired subjects with negative Aβ (CU–), 66 subjects with pre-clinical AD (CU with positive Aβ), 164 subjects with mild cognitive impairment with negative Aβ (MCI–), 254 subjects with prodromal AD (MCI with positive Aβ), and 98 subjects with dementia. Multiple linear regression models, linear mixed-effects models, and local regression were used to explore cross-sectional and longitudinal associations of plasma p-tau181 with cognition, neuroimaging, or CSF biomarkers adjusted for age, sex, education, and APOE genotype. Besides, Kaplan–Meier and adjusted Cox-regression model were performed to predict the risk of progression to dementia. Receiver operating characteristic analyses were performed to evaluate the predictive value of p-tau181.Results: Plasma p-tau181 level was highest in AD dementia, followed by prodromal AD and pre-clinical AD. In pre-clinical AD, plasma p-tau181 was negatively associated with hippocampal volume (β = −0.031, p-value = 0.017). In prodromal AD, plasma p-tau181 was associated with decreased global cognition, executive function, memory, language, and visuospatial functioning (β range −0.119 to −0.273, p-value < 0.05) and correlated with hippocampal volume (β = −0.028, p-value < 0.005) and white matter hyperintensity volume (WMH) volume (β = 0.02, p-value = 0.01). In AD dementia, increased plasma p-tau181 was associated with worse memory. In the whole group, baseline plasma p-tau181 was significantly associated with longitudinal increases in multiple neuropsychological test z-scores and correlated with AD-related CSF biomarkers and hippocampal volume (p-value < 0.05). Meanwhile, CU or MCI with high plasma p-tau181 carried a higher risk of progression to dementia. The area under the curve (AUC) of the adjusted model (age, sex, education, APOE genotype, and plasma p-tau181) was 0.78; that of additionally included CSF biomarkers was 0.84.Conclusions: Plasma p-tau181 level is related to multiple AD-associated cognitive domains and AD-related CSF biomarkers at the clinical stages of AD. Moreover, plasma p-tau181 level is related to the change rates of cognitive decline and hippocampal atrophy. Thus, this study confirms the utility of plasma p-tau181 as a non-invasive biomarker for early detection and prediction of AD.


2021 ◽  
Vol 18 ◽  
Author(s):  
Fahimeh Nezhadmoghadam ◽  
Antonio Martinez-Torteya ◽  
Victor Treviño ◽  
Emmanuel Martínez ◽  
Alejandro Santos ◽  
...  

Background: Alzheimer’s disease (AD) is an irreversible, progressive brain disorder that slowly destroys memory and thinking skills. The ability to correctly predict the diagnosis of Alzheimer’s disease in its earliest stages can help physicians make more informed clinical decisions on therapy plans. Objective: This study aimed to determine whether the unsupervised discovering of latent classes of subjects with mild cognitive impairment (MCI) may be useful in finding different prodromal AD stages and/or subjects with a low MCI to AD conversion risk. Methods: Total 18 features relevant to the MCI to AD conversion process led to the identification of 681 subjects with early MCI. Subjects were divided into training (70%) and validation (30%) sets. Subjects from the training set were analyzed using consensus clustering, and Gaussian mixture models (GMM) were used to describe the latent classes. The discovered GMM predicted the latent class of the validation set. Finally, descriptive statistics, rates of conversion, and odds ratios (OR) were computed for each discovered class. Results: Through consensus clustering, we discovered three different clusters among MCI subjects. The three clusters were associated with low-risk (OR = 0.12, 95%CI = 0.04 to 0.3|), medium-risk (OR = 1.33, 95%CI = 0.75 to 2.37), and high-risk (OR = 3.02, 95%CI = 1.64 to 5.57) of converting from MCI to AD, with the high-risk and low-risk groups highly contrasting. Hence, prodromal AD subjects were present in only two clusters. Conclusion: We successfully discovered three different latent classes among MCI subjects with varied risks of MCI-to- AD conversion through consensus clustering. Two of the discovered classes may represent two different prodromal presentations of Alzheimer´s disease.


2021 ◽  
Author(s):  
Rosaleena Mohanty ◽  
Daniel Ferreira ◽  
Agneta Nordberg ◽  
Eric Westman

INTRODUCTION: Different subtypes/patterns have been defined using tau-PET and structural-MRI in Alzheimer's disease (AD), but the relationship between tau pathology and atrophy remains unclear. Our goals were twofold: (a) investigate the association between baseline tau-PET patterns and longitudinal atrophy in the AD continuum; (b) characterize heterogeneity as a continuous phenomenon over the conventional notion using discrete subgroups. METHODS: In 366 individuals (amyloid-beta-positive: cognitively normal, prodromal AD, AD dementia; amyloid-beta-negative healthy), we examined the association between tau-PET patterns (operationalized as a continuous phenomenon and a discrete phenomenon) and longitudinal sMRI. RESULTS: We observed a differential association between tau-PET patterns and longitudinal atrophy. Heterogeneity, measured continuously, may offer an alternative characterization, sharing correspondence with the conventional subgrouping. DISCUSSION: Site and the rate of atrophy are modulated differentially by tau-PET patterns in the AD continuum. We postulate that heterogeneity be treated as a continuous phenomenon for greater sensitivity over the current/conventional discrete subgrouping.


2021 ◽  
Vol 12 ◽  
Author(s):  
Benjamin Cretin ◽  
Olivier Bousiges ◽  
Geoffroy Hautecloque ◽  
Nathalie Philippi ◽  
Frederic Blanc ◽  
...  

Objective: To study whether cerebrospinal fluid (CSF) analysis may serve as a diagnostic test for the screening of epilepsy in sporadic prodromal Alzheimer's disease (AD).Methods: A total of 29 patients with epileptic prodromal sporadic AD patients (epADs) were included and were retrospectively compared with 38 non-epileptic prodromal AD patients (nepADs) for demographics, clinical features, Mini-Mental Status Examination (MMSE) results, CSF biomarkers, and electro-radiological features.Results: Our study did not show any significant differences in CSF biomarkers regarding neurodegeneration, albumin levels, and inflammation between epADs and nepADs. The epADs were significantly older at diagnosis (p = 0.001), more hypertensive (p = 0.01), and displayed larger white matter hyperintensities on brain magnetic resonance imaging (MRI; p = 0.05). There was a significant correlation between the CSF Aβ-42 and Aβ-40 levels with interictal epileptiform discharges and delta slowing on EEGs recordings, respectively (p = 0.03).Conclusions: Our study suggests that CSF may not serve as a surrogate marker of epilepsy in prodromal AD and cannot circumvent the operator-dependent and time-consuming interpretation of EEG recordings. In humans, AD-related epileptogenesis appears to involve the Aβ peptides but likely also additional non-amyloid factors such as small-vessel disease (i.e., white matter hyperintensities).


2021 ◽  
Vol 13 ◽  
Author(s):  
Federica Cacciamani ◽  
Marion Houot ◽  
Geoffroy Gagliardi ◽  
Bruno Dubois ◽  
Sietske Sikkes ◽  
...  

Background: Identifying a poor degree of awareness of cognitive decline (ACD) could represent an early indicator of Alzheimer's disease (AD).Objectives: (1) to understand whether there is evidence of poor ACD in the pre-dementia stages of AD; (2) to summarize the main findings obtained investigating ACD in AD; (3) to propose a conceptual framework.Data Sources: We searched Scopus, Pubmed, and the reference lists for studies published up to August 2020. Original research articles must report a measure of ACD and included individuals with AD dementia, or prodromal AD (or MCI), or being at risk for AD.Data Synthesis: All studies covering preclinical, prodromal, and AD dementia were systematically reviewed. We intended to perform a meta-analysis of empirical studies on preclinical AD or prodromal AD (or MCI), to compare ACD between clinical groups. Due to the paucity of literature on preclinical AD, meta-analysis was only possible for prodromal AD (or MCI) studies.Results: We systematically reviewed 283 articles, and conducted a meta-analysis of 18 articles on prodromal AD (or MCI), showing that ACD was not significantly different between patients with amnestic and non-amnestic MCI (SMD = 0.09, p = 0.574); ACD was significantly poorer in amnestic MCI (SMD = −0.56, p = 0.001) and mild AD (SMD = −1.39, p < 0.001) than in controls; ACD was also significantly poorer in mild AD than in amnestic MCI (SMD = −0.75, p < 0.001), as well as poorer than in non-amnestic MCI (SMD = −1.00, p < 0.001). We also discuss key findings on ACD in AD, such as its neural and cognitive correlates.Conclusions and Implications: We propose that patients may be complaining of their initial subtle cognitive changes, but ACD would soon start to decrease. The individual would show mild anosognosia in the MCI stage, and severe anosognosia in dementia. The evaluation of ACD (comparing self-report to cognitive scores or to informant-report) could be useful to guide the clinician toward a timely diagnosis, and in trials targeting early-stage AD.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alberto Lleó ◽  
Henrik Zetterberg ◽  
Jordi Pegueroles ◽  
Thomas K. Karikari ◽  
María Carmona-Iragui ◽  
...  

AbstractPlasma tau phosphorylated at threonine 181 (p-tau181) predicts Alzheimer’s disease (AD) pathology with high accuracy in the general population. In this study, we investigated plasma p-tau181 as a biomarker of AD in individuals with Down syndrome (DS). We included 366 adults with DS (240 asymptomatic, 43 prodromal AD, 83 AD dementia) and 44 euploid cognitively normal controls. We measured plasma p-tau181 with a Single molecule array (Simoa) assay. We examined the diagnostic performance of p-tau181 for the detection of AD and the relationship with other fluid and imaging biomarkers. Plasma p-tau181 concentration showed an area under the curve of 0.80 [95% CI 0.73–0.87] and 0.92 [95% CI 0.89–0.95] for the discrimination between asymptomatic individuals versus those in the prodromal and dementia groups, respectively. Plasma p-tau181 correlated with atrophy and hypometabolism in temporoparietal regions. Our findings indicate that plasma p-tau181 concentration can be useful to detect AD in DS.


Sign in / Sign up

Export Citation Format

Share Document