Predicting the optimum operating parameters and hydrodynamic behavior of rectangular sheet membrane using response surface methodology coupled with computational fluid dynamics

2020 ◽  
Vol 74 (9) ◽  
pp. 2977-2990
Author(s):  
Anirban Banik ◽  
Sushant Kumar Biswal ◽  
Tarun Kanti Bandyopadhyay
Author(s):  
Fuping Qian ◽  
Xingwei Huang ◽  
Mingyao Zhang

Numerical simulations of cyclones with various vortex finder dimensions and inlet section angles were performed to study the gas shortcut flow rate. The numerical solutions were carried out using commercial computational fluid dynamics (CFD) code Fluent 6.1. A prediction model of the gas shortcut flow rate was obtained based on response surface methodology by means of the statistical software program (Minitab V14). The results show that the length of the vortex finder insertion, the vortex finder diameter and the inlet section angle play an important role in influencing the gas shortcut flow rate. The gas shortcut flow rate decreases when increasing the inlet section angle, and increases when increasing the vortex finder diameter and decreasing the length of the vortex finder insertion. Compared with the effect of the length of the vortex finder insertion on the shortcut flow rate, the effect of the vortex finder diameter on the gas shortcut flow rate seems more pronounced. The effect of the vortex finder dimension on the gas shortcut flow rate is changed with the different inlet section angles, i.e., the effects of the vortex finder dimension of the conventional cyclone (the inlet section angle is 0º) on the gas shortcut flow rate is stronger than the cyclone with 30º and 45º inlet section angles.


2017 ◽  
Vol 41 (5) ◽  
pp. 285-296 ◽  
Author(s):  
Haris Moazam Sheikh ◽  
Zeeshan Shabbir ◽  
Hassan Ahmed ◽  
Muhammad Hamza Waseem ◽  
Muhammad Zubair Sheikh

This article aims to present a two-dimensional parametric analysis of a modified Savonius wind turbine using computational fluid dynamics. The effects of three independent parameters of the rotor, namely, shape factor, overlap ratio, and tip speed ratio on turbine performance were studied and then optimized for maximum coefficient of performance using response surface methodology. The rotor performance was analyzed over specific domains of the parameters under study, and three-variable Box-Behnken design was used for design of experiment. The specific parametric combinations as per design of experiment were simulated using ANSYS Fluent®, and the response variable, coefficient of performance (Cp), was calculated. The sliding mesh model was utilized, and the flow was simulated using Shear Stress Transport (SST) k − ω model. The model was validated using past experimental results and found to predict parametric effects accurately. Minitab® and ReliaSoft DOE++® were used to develop regression equation and find the optimum combination of parameters for coefficient of performance over the specified parametric domains using response surface methodology.


2012 ◽  
Vol 65 (12) ◽  
pp. 2183-2190 ◽  
Author(s):  
E. Gengec ◽  
M. Kobya ◽  
E. Demirbas ◽  
A. Akyol ◽  
K. Oktor

Effluents from Baker's yeast production plant contain a high percentage of color and a large amount of organic load. In the present study, Baker's yeast wastewater (BYW) is treated with the electrocoagulation (EC) process using Al electrodes. Operating parameters (pH, current density, color intensity and operating time) are optimized by response surface methodology (RSM). Quadratic models are developed for the responses which are removal efficiencies of color, chemical oxygen demand (COD) and total organic carbon (TOC) and operating cost (OC). Optimum operating parameters and responses are determined as initial pH 5.2, current density of 61.3 A/m2 and operation time of 33 min, and 71% of color, 24% of COD, 24% of TOC removal efficiencies and OC of 0.869 €/m3, respectively. The quadratic model fits for all responses very well with R2 (>0.95). This paper clearly shows that RSM is able to optimize the operating parameters to maximize the color, COD and TOC removal efficiencies and minimize the OC.


2020 ◽  
Vol 26 (2) ◽  
pp. 200105-0
Author(s):  
Kaushal Naresh Gupta ◽  
Rahul Kumar

This paper discusses the isolation of xylene vapor through adsorption using granular activated carbon as an adsorbent. The operating parameters investigated were bed height, inlet xylene concentration and flow rate, their influence on the percentage utilization of the adsorbent bed up to the breakthrough was found out. Mathematical modeling of experimental data was then performed by employing a response surface methodology (RSM) technique to obtain a set of optimum operating conditions to achieve maximum percentage utilization of bed till breakthrough. A fairly high value of R2 (0.993) asserted the proposed polynomial equation’s validity. ANOVA results indicated the model to be highly significant with respect to operating parameters studied. A maximum of 76.1% utilization of adsorbent bed was found out at a bed height of 0.025 m, inlet xylene concentration of 6,200 ppm and a gas flow rate of 25 mL.min-1. Furthermore, the artificial neural network (ANN) was also employed to compute the percentage utilization of the adsorbent bed. A comparison between RSM and ANN divulged the performance of the latter (R2 = 0.99907) to be slightly better. Out of various kinetic models studied, the Yoon-Nelson model established its appropriateness in anticipating the breakthrough curves.


Sign in / Sign up

Export Citation Format

Share Document