Development of Optimum Operating Parameters for Bioelectricity Generation from Sugar Wastewater Using Response Surface Methodology

2014 ◽  
Vol 3 (15) ◽  
pp. 2098-2109 ◽  
Author(s):  
M. Aremu
2012 ◽  
Vol 65 (12) ◽  
pp. 2183-2190 ◽  
Author(s):  
E. Gengec ◽  
M. Kobya ◽  
E. Demirbas ◽  
A. Akyol ◽  
K. Oktor

Effluents from Baker's yeast production plant contain a high percentage of color and a large amount of organic load. In the present study, Baker's yeast wastewater (BYW) is treated with the electrocoagulation (EC) process using Al electrodes. Operating parameters (pH, current density, color intensity and operating time) are optimized by response surface methodology (RSM). Quadratic models are developed for the responses which are removal efficiencies of color, chemical oxygen demand (COD) and total organic carbon (TOC) and operating cost (OC). Optimum operating parameters and responses are determined as initial pH 5.2, current density of 61.3 A/m2 and operation time of 33 min, and 71% of color, 24% of COD, 24% of TOC removal efficiencies and OC of 0.869 €/m3, respectively. The quadratic model fits for all responses very well with R2 (>0.95). This paper clearly shows that RSM is able to optimize the operating parameters to maximize the color, COD and TOC removal efficiencies and minimize the OC.


2020 ◽  
Vol 26 (2) ◽  
pp. 200105-0
Author(s):  
Kaushal Naresh Gupta ◽  
Rahul Kumar

This paper discusses the isolation of xylene vapor through adsorption using granular activated carbon as an adsorbent. The operating parameters investigated were bed height, inlet xylene concentration and flow rate, their influence on the percentage utilization of the adsorbent bed up to the breakthrough was found out. Mathematical modeling of experimental data was then performed by employing a response surface methodology (RSM) technique to obtain a set of optimum operating conditions to achieve maximum percentage utilization of bed till breakthrough. A fairly high value of R2 (0.993) asserted the proposed polynomial equation’s validity. ANOVA results indicated the model to be highly significant with respect to operating parameters studied. A maximum of 76.1% utilization of adsorbent bed was found out at a bed height of 0.025 m, inlet xylene concentration of 6,200 ppm and a gas flow rate of 25 mL.min-1. Furthermore, the artificial neural network (ANN) was also employed to compute the percentage utilization of the adsorbent bed. A comparison between RSM and ANN divulged the performance of the latter (R2 = 0.99907) to be slightly better. Out of various kinetic models studied, the Yoon-Nelson model established its appropriateness in anticipating the breakthrough curves.


Author(s):  
Ramkumar RAMAKRISHNAN ◽  
Ragupathy ARUMUGAM

Performance  of the coolig tower was analysed with various operating parameters and find the minimum cold water temperature. In this study, optimization of operating parameters was investigated. An experimental design was carried out based on central composite design(CCD) with response surface methodology(RSM). This paper presents optimum operating parameters and   the minimum cold water temperature using RSM method.  The RSM was used to evaluate the effects of operating variables and their interaction towards the attainment of their optimum conditions. Based on statistical analysis, water flow, air flow, hot water temperature and packing height were high significant on cold water temperature, with very low probability values(<0.0001). The optimum operating parameters predicted using  RSM method and confirmed through experiment. 


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Nour Sh. El-Gendy ◽  
Hekmat R. Madian ◽  
Salem S. Abu Amr

A statistical model was developed in this study to describe bioethanol production through a batch fermentation process of sugarcane molasses by locally isolatedSaccharomyces cerevisiaeY-39. Response surface methodology RSM based on central composite face centered design CCFD was employed to statistically evaluate and optimize the conditions for maximum bioethanol production and study the significance and interaction of incubation period, initial pH, incubation temperature, and molasses concentration on bioethanol yield. With the use of the developed quadratic model equation, a maximum ethanol production of 255 g/L was obtained in a batch fermentation process at optimum operating conditions of approximately 71 h, pH 5.6, 38°C, molasses concentration 18% wt.%, and 100 rpm.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2327 ◽  
Author(s):  
Ruth Anyanwu ◽  
Cristina Rodriguez ◽  
Andy Durrant ◽  
Abdul Olabi

The feasibility of the application of a tray drier in dewatering microalgae was investigated. Response surface methodology (RSM) based on Central Composite Design (CCD) was used to evaluate and optimise the effect of air temperature and air velocity as independent variables on the dewatering efficiency as a response function. The significance of independent variables and their interactions was tested by means of analysis of variance (ANOVA) with a 95% confidence level. Results indicate that the air supply temperature was the main parameter affecting dewatering efficiency, while air velocity had a slight effect on the process. The optimum operating conditions to achieve maximum dewatering were determined: air velocities and temperatures ranged between 4 to 10 m/s and 40 to 56 °C respectively. An optimised dewatering efficiency of 92.83% was achieved at air an velocity of 4 m/s and air temperature of 48 °C. Energy used per 1 kg of dry algae was 0.34 kWh.


Sign in / Sign up

Export Citation Format

Share Document