hydrodynamic behavior
Recently Published Documents


TOTAL DOCUMENTS

456
(FIVE YEARS 94)

H-INDEX

30
(FIVE YEARS 5)

Author(s):  
Boren Tan ◽  
Baoqun Wang ◽  
Chao Chang ◽  
Yong Wang ◽  
Shili Zheng ◽  
...  

Fluids ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 4
Author(s):  
Iskander Abroug ◽  
Nizar Abcha ◽  
Fahd Mejri ◽  
Emma Turki ◽  
Elena Ojeda

Vortex shedding behind an elastically mounted circular cylinder in the presence of group focused waves propagating upstream was investigated using a classical approach (time series and FFT) and nonclassical approach (complex 2D Morlet wavelets). Wavelet analysis emerged as a novel solution in this regard. Our results include wave trains with different nonlinearities propagating in different water depths and derived from three types of spectra (Pierson–Moskowitz, JONSWAP (γ = 3.3 or γ = 7)). It was found that the generated wave trains could modify regimes of shedding behind the cylinder, and subharmonic frequency lock-in could arise in particular situations. The occurrence of a lock-in regime in the case of wave trains propagating in intermediate water locations was shown experimentally even for small nonlinearities. Moreover, the application of time-localized wavelet analysis was found to be a powerful approach. In fact, the frequency lock-in regime and its duration could be readily identified from the wavelet-based energy and its corresponding ridges.


2021 ◽  
pp. 1-12
Author(s):  
Nitin D. Thulkar ◽  
Satoru Yamaguchi

Abstract Leg placement and removal are the two most critical operational modes for dynamically positioned jack-ups when working close to an offshore asset. Any positional deviation may lead to collision and damage to the asset. The industry operates with a weak link between the dynamic positioning (DP) system and the jacking system. Current DP systems operate without any sensors identifying the hydrodynamic force variations on the legs and spudcans, which vary between different leg and spudcan designs. When the spudcan is near to the sea bottom, the hydrodynamic force must be reported to avoid large positional deviations driven by the DP system. This article promotes a mechanism to measure these forces using Computational Fluid Dynamics (CFD) analysis to analyze the jack-up behavior, when the spudcan assembly is operating close to the sea bottom. Introduction A jack-up’s dynamic positioning (DP) control system requires minimum 23–30 minutes for the mathematical model to learn the vessel’s hydrodynamic behavior and response to the environment. Although when moving between locations, DP jack-up vessels provide time for the DP model to learn the hydrodynamic behavior, the spudcan that holds the vessel position and headings does not allow the mathematical model to learn. The residual current remains constant until the spudcan is in the seabed. As a result, the DP mathematical model-building process does not help the DP system to estimate the additional forces in the form of residual current. Soon after the spudcan detaches from the seabed, the vessel drift occurs because the vessel thrusters’ response need a rapid response of thrust and azimuth (directions). The DP system manufacturers currently use a sensorless approach to account for the hydrodynamic forces on the legs and spudcans to build a factor into the mathematical model. The jack-up DP system addresses two simultaneous forces on the legs. The leg element in the air is subject to aerodynamic effects and the leg and spudcan elements in the water are subject to hydrodynamic effects. DP systems currently use drag coefficients (Cd) to compute drag forces, however the hydrodynamic force variations during the complete lowering and raising processes are never completely considered. This weak link in the overall operation leads to positional error and is generally unrecognized by the vessel operators. The risk falls to DP officer and the jacking master to handle. The DP and jacking simultaneous operations mode (SIMOPS) may easily last between 15 and 90 minutes, depending on jacking speed, operational water depth, and field procedures, on approach to the asset. The area of operation is close to the asset, which increases the risk of collision with the asset. Most of the studies on jack-up vessels focus on impact force acting on the leg during touchdown or penetrations, such as Elkadi et al. (2014) and Kreuzer et al. (2014).


Author(s):  
Murilo Camargo ◽  
Pedro R. Cleto ◽  
Michael A. Maedo ◽  
Eduardo A. Rodrigues ◽  
Luís A.G. Bitencourt ◽  
...  

2021 ◽  
Vol 136 (9) ◽  
Author(s):  
H. Dehgan ◽  
M. H. Nobakhti ◽  
E. Esmaeilzadeh ◽  
M. Khayat ◽  
A. Rostamzadeh Khosroshahi

CFD letters ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 45-57
Author(s):  
Badr Ali Bzya Albeshri ◽  
Nazrul Islam ◽  
Ahmad Yahya Bokhary ◽  
Amjad Ali Pasha

Nanofluids occupy a large place in many fields of technology due its improved heat transfer and pressure drop characteristics. Very recently, a new type of nanofluid, known as hybrid nanofluid, which consists of a mixture of two different nanoparticles suspended in the base fluid has been found to be the most emerging heat transfer fluid. It is well also established that entrance region effect enhances heat transfer rate. The present study deals with numerical investigations of the hydrodynamic behavior of the laminar mixed convective flow of a hybrid nanofluid in the entrance region of a horizontal annulus. A thermal boundary condition of uniform heat flux at the inner wall and an adiabatic outer wall is selected. The SIMPLER numerical algorithm is adopted in the present study. The hybrid nanofluid consists of water as base fluid and Ag-TiO2 as nanoparticles. The ratio of Ag to TiO2 is maintained as 1:3. The objective of the current study is mainly to analyze the hydrodynamic behavior hybrid nanofluid in the entrance region. The investigation reveals that the effect of the secondary flow due to the buoyancy forces is more intense in the upper part of the annular cross-section. It increases throughout the cross-section until its intensity reaches a maximum and then it becomes weak far downstream. The development of axial flow and temperature field is strongly influenced by the buoyancy forces.


Sign in / Sign up

Export Citation Format

Share Document