Nighttime image dehazing using color cast removal and dual path multi-scale fusion strategy

2021 ◽  
Vol 16 (4) ◽  
Author(s):  
Bo Wang ◽  
Li Hu ◽  
Bowen Wei ◽  
Zitong Kang ◽  
Chongyi Li
2021 ◽  
Vol 183 ◽  
pp. 107986
Author(s):  
Yun Liu ◽  
Anzhi Wang ◽  
Hao Zhou ◽  
Pengfei Jia

2017 ◽  
Vol 77 (3) ◽  
pp. 3125-3141 ◽  
Author(s):  
Bo Jiang ◽  
Hongqi Meng ◽  
Xiaolei Ma ◽  
Lin Wang ◽  
Yan Zhou ◽  
...  

2021 ◽  
Vol 13 (3) ◽  
pp. 433
Author(s):  
Junge Shen ◽  
Tong Zhang ◽  
Yichen Wang ◽  
Ruxin Wang ◽  
Qi Wang ◽  
...  

Remote sensing images contain complex backgrounds and multi-scale objects, which pose a challenging task for scene classification. The performance is highly dependent on the capacity of the scene representation as well as the discriminability of the classifier. Although multiple models possess better properties than a single model on these aspects, the fusion strategy for these models is a key component to maximize the final accuracy. In this paper, we construct a novel dual-model architecture with a grouping-attention-fusion strategy to improve the performance of scene classification. Specifically, the model employs two different convolutional neural networks (CNNs) for feature extraction, where the grouping-attention-fusion strategy is used to fuse the features of the CNNs in a fine and multi-scale manner. In this way, the resultant feature representation of the scene is enhanced. Moreover, to address the issue of similar appearances between different scenes, we develop a loss function which encourages small intra-class diversities and large inter-class distances. Extensive experiments are conducted on four scene classification datasets include the UCM land-use dataset, the WHU-RS19 dataset, the AID dataset, and the OPTIMAL-31 dataset. The experimental results demonstrate the superiority of the proposed method in comparison with the state-of-the-arts.


2017 ◽  
Vol 25 (8) ◽  
pp. 2182-2194 ◽  
Author(s):  
武 昆 WU Kun ◽  
韩广良 HAN Guang-liang ◽  
杨 航 YANG Hang ◽  
王宇庆 WANG Yu-qing ◽  
吴笑天 WU Xiao-tian

2020 ◽  
Vol 10 (3) ◽  
pp. 1190
Author(s):  
Samia Haouassi ◽  
Di Wu

Image dehazing plays a pivotal role in numerous computer vision applications such as object recognition, surveillance systems, and security systems, where it can be considered as an introductory stage. Recently, many proposed learning-based works address this significant task; however, most of them neglect the atmospheric light estimation and fail to produce accurate transmission maps. To address such a problem, in this paper, we propose a two-stage dehazing system. The first stage presents an accurate atmospheric light algorithm labeled “A-Est” that employs hazy image blurriness and quadtree decomposition. Te second stage represents a cascaded multi-scale CNN model called CMT n e t that consists of two subnetworks, one for calculating rough transmission maps (CMCNN t r ) and the other for its refinement (CMCNN t ). Each subnetwork is composed of three-layer D-units (D indicates dense). Experimental analysis and comparisons with state-of-the-art dehazing methods revealed that the proposed system can estimate AL and t efficiently and accurately by achieving high-quality dehazing results and outperforms state-of-the-art comparative methods according to SSIM and MSE values, where our proposed achieves the best scores of both (91% average SSIM and 0.068 average MSE).


Sign in / Sign up

Export Citation Format

Share Document