Structural, optical and electron paramagnetic resonance studies on Cu-doped ZnO nanoparticles synthesized using a novel auto-combustion method

2013 ◽  
Vol 7 (2) ◽  
pp. 196-201 ◽  
Author(s):  
R. Elilarassi ◽  
G. Chandrasekaran
2020 ◽  
Vol 5 (3) ◽  
pp. 236-251
Author(s):  
Eshwara I. Naik ◽  
Halehatty S.B. Naik ◽  
Ranganaik Viswanath

Background: Various interesting consequences are reported on structural, optical, and photoluminescence properties of Zn1-xSmxO (x=0, 0.01, 0.03 and 0.05) nanoparticles synthesized by sol-gel auto-combustion route. Objective: This study aimed to examine the effects of Sm3+-doping on structural and photoluminescence properties of ZnO nanoparticles. Methods: Zn1-xSmxO (x=0, 0.01, 0.03 and 0.05) nanoparticles were synthesized by sol-gel auto combustion method. Results: XRD patterns confirmed the Sm3+ ion substitution through the undisturbed wurtzite structure of ZnO. The crystallite size was decreased from 24.33 to 18.46 nm with Sm3+ doping. The hexagonal and spherical morphology of nanoparticles was confirmed by TEM analysis. UV-visible studies showed that Sm3+ ion doping improved the visible light absorption capacity of Sm3+ iondoped ZnO nanoparticles. PL spectra of Sm3+ ion-doped ZnO nanoparticles showed an orange-red emission peak corresponding to 4G5/2→6HJ (J=7/2, 9/2 and 11/2) transition of Sm3+ ion. Sm3+ ion-induced PL was proposed with a substantial increase in PL intensity with a blue shift in peak upon Sm3+ content increase. Conclusion: Absorption peaks associated with doped ZnO nanoparticles were moved to a longer wavelength side compared to ZnO, with bandgap declines when Sm3+ ions concentration was increased. PL studies concluded that ZnO emission properties could be tuned in the red region along with the existence of blue peaks upon Sm3+ ion doping, which also results in enhancing the PL intensity. These latest properties related to Sm3+ ion-doped nanoparticles prepared by a cost-efficient process appear to be interesting in the field of optoelectronic applications, which makes them a prominent candidate in the form of red light-emitting diodes.


2013 ◽  
Vol 06 (04) ◽  
pp. 1330004 ◽  
Author(s):  
RÜDIGER-A. EICHEL ◽  
EMRE ERDEM ◽  
PETER JAKES ◽  
ANDREW OZAROWSKI ◽  
JOHAN VAN TOL ◽  
...  

The defect structure of ZnO nanoparticles is characterized by means of high-field electron paramagnetic resonance (EPR) spectroscopy. Different point and complex defects could be identified, located at the "bulk" or the surface region of the nanoparticles. In particular, by exploiting the enhanced g-value resolution at a Larmor frequency of 406.4 GHz, it could be shown that the resonance commonly observed at g = 1.96 is comprised of several overlapping resonances from different defects. Based on the high-field EPR analysis, the development of a space-charge layer could be monitored that consists of (shallow) donor-type [Formula: see text] defects at the "bulk" and acceptor-type [Formula: see text] and complex [Formula: see text] defects at the surface. Application of a core-shell model allows to determine the thickness of the depletion layer to 1.0 nm for the here studied compounds [J.J. Schneider et al., Chem. Mater.22, 2203 (2010)].


2015 ◽  
Vol 29 ◽  
pp. 372-379 ◽  
Author(s):  
Yajun Wang ◽  
Xiaoru Zhao ◽  
Libing Duan ◽  
Fenggui Wang ◽  
Hongru Niu ◽  
...  

2011 ◽  
Vol 10 (04n05) ◽  
pp. 1025-1028 ◽  
Author(s):  
FAHEEM AHMED ◽  
SHALENDRA KUMAR ◽  
NISHAT ARSHI ◽  
M. S. ANWAR ◽  
BON HEUN KOO ◽  
...  

In the present work, we have synthesized Zn 1-x Co x O (x = 0.0 ≤ x ≤ 0.1) nanoparticles by an auto-combustion method using C2H5NO2 (glycine) as a fuel. The prepared nanoparticles were characterized by using X-ray diffraction, transmission electron microscopy, Photo-luminescence (PL) and magnetization measurements. XRD and TEM results demonstrated that Co -doped ZnO have a single phase nature with wurtzite structure and Co2+ ions were successfully incorporated into the lattice position of Zn2+ ions in ZnO matrix. PL spectra show two emission bands in visible region. Magnetic studies showed that Co -doped ZnO nanoparticles exhibit room temperature ferromagnetism.


2018 ◽  
Vol 39 (4) ◽  
pp. 043001 ◽  
Author(s):  
Khizar-ul Haq ◽  
M. Irfan ◽  
Muhammad Masood ◽  
Murtaza Saleem ◽  
Tahir Iqbal ◽  
...  

2014 ◽  
Vol 2 (25) ◽  
pp. 4947 ◽  
Author(s):  
Michael Lorenz ◽  
Rolf Böttcher ◽  
Stefan Friedländer ◽  
Andreas Pöppl ◽  
Daniel Spemann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document